A116508 a(n) = C( C(n,2), n).
1, 0, 0, 1, 15, 252, 5005, 116280, 3108105, 94143280, 3190187286, 119653565850, 4922879481520, 220495674290430, 10682005290753420, 556608279578340080, 31044058215401404845, 1845382436487682488000, 116475817125419611477660, 7779819801401934344268210
Offset: 0
Examples
a(5) = C(C(5,2),5) = C(10,5) = 252.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..370
Programs
-
Magma
[0] cat [(Binomial(Binomial(n+2, n), n+2)): n in [0..20]]; // Vincenzo Librandi, Nov 03 2014
-
Maple
a:= n-> binomial(binomial(n, 2), n): seq(a(n), n=0..20);
-
Mathematica
nn = 18; f[x_, y_] := Sum[(1 + y)^Binomial[n, 2] x^n/n!, {n, 1, nn}]; Table[ n! Coefficient[Series[f[x, y], {x, 0, nn}], x^n y^n], {n, 1, nn}] (* Geoffrey Critzer, Nov 02 2014 *) Table[Length[Subsets[Subsets[Range[n],{2}],{n}]],{n,0,5}] (* Gus Wiseman, Dec 22 2023 *) Table[SeriesCoefficient[(1 + x)^(n*(n-1)/2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 06 2025 *)
-
Python
from math import comb def A116508(n): return comb(n*(n-1)>>1,n) # Chai Wah Wu, Jul 02 2024
-
Sage
[(binomial(binomial(n+2,n),n+2)) for n in range(-1, 17)] # Zerinvary Lajos, Nov 30 2009
Formula
a(n) ~ exp(n - 2) * n^(n - 1/2) / (sqrt(Pi) * 2^(n + 1/2)). - Vaclav Kotesovec, May 19 2020
a(n) = [x^n] (1+x)^(n*(n-1)/2). - Vaclav Kotesovec, Aug 06 2025
Extensions
a(0)=1 prepended by Alois P. Heinz, Feb 02 2024
Comments