cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116668 a(n) = (5*n^2 + n + 2)/2.

Original entry on oeis.org

1, 4, 12, 25, 43, 66, 94, 127, 165, 208, 256, 309, 367, 430, 498, 571, 649, 732, 820, 913, 1011, 1114, 1222, 1335, 1453, 1576, 1704, 1837, 1975, 2118, 2266, 2419, 2577, 2740, 2908, 3081, 3259, 3442, 3630, 3823, 4021, 4224, 4432, 4645, 4863, 5086, 5314, 5547
Offset: 0

Views

Author

Gary W. Adamson, Feb 22 2006

Keywords

Comments

Binomial transform of (1, 3, 5, 0, 0, 0, ...).

Examples

			a(3) = 1*1 + 3*3 + 3*5 + 1*0 = 25.
		

Crossrefs

Cf. A116666.

Programs

  • GAP
    List([0..1000],n->(5*n^2+n+2)/2); # Muniru A Asiru, Jan 30 2018
  • Magma
    [(5*n^2 + n+2)/2: n in [0..50]]; // G. C. Greubel, Jan 29 2018
    
  • Maple
    a:=n->(5*n^2+n+2)/2: seq(a(n),n=0..50); # Emeric Deutsch, Feb 28 2006
  • Mathematica
    s = 1; lst = {s}; Do[s += n + 2; AppendTo[lst, s], {n, 1, 235, 5}] lst (* Zerinvary Lajos, Jul 11 2009 *)
    LinearRecurrence[{3,-3,1}, {1,4,12}, 50] (* G. C. Greubel, Jan 29 2018 *)
  • PARI
    a(n)=(5*n^2+n+2)/2 \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

Product of Pascal's triangle as an infinite lower triangular matrix and the vector (1, 3, 5, 0, 0, 0, ...).
O.g.f.: (1+x+3*x^2)/(1-x)^3. - R. J. Mathar, Apr 02 2008
a(n) = 5*n + a(n-1) - 2 (with a(0)=1) - Vincenzo Librandi, Nov 13 2010
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: exp(x)*(1 + 3*x + 5*x^2/2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

More terms from Emeric Deutsch, Feb 28 2006