A116686 Total number of parts smaller than the largest part, in all partitions of n.
0, 0, 1, 3, 8, 15, 29, 48, 79, 123, 188, 276, 404, 575, 808, 1122, 1540, 2089, 2811, 3748, 4958, 6519, 8504, 11034, 14231, 18268, 23312, 29638, 37486, 47245, 59279, 74140, 92347, 114703, 141933, 175174, 215478, 264407, 323448, 394788, 480509, 583609
Offset: 1
Keywords
Examples
a(5) = 8 because the partitions of 5 are [5], [4,(1)], [3,(2)], [3,(1),(1)], [2,2,(1)], [2,(1),(1),(1)] and [1,1,1,1,1], containing a total of 8 parts that are smaller than the largest part (shown between parentheses).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
f:=sum(x^i*sum(x^j/(1-x^j),j=1..i-1)/product(1-x^q,q=1..i),i=2..55): fser:=series(f,x=0,50): seq(coeff(fser,x^n),n=1..47);
-
Mathematica
Table[Length[Flatten[Rest[Split[#]]&/@Select[IntegerPartitions[n], #[[1]]> #[[-1]]&]]],{n,50}] (* Harvey P. Dale, Jul 26 2016 *)
Formula
a(n) = Sum_{k>=0} k*A116685(n,k).
G.f.: Sum_{i>=1} (x^i*(Sum_{j=1..i-1} x^j/(1-x^j))/(Product_{q=1..i} (1-x^q))).
Comments