A116690 a(n) = C(n,8) + C(n,7) + C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1).
0, 1, 3, 7, 15, 31, 63, 127, 255, 510, 1012, 1980, 3796, 7098, 12910, 22818, 39202, 65535, 106761, 169765, 263949, 401929, 600369, 880969, 1271625, 1807780, 2533986, 3505698, 4791322, 6474540, 8656936, 11460948, 15033172, 19548045
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Magma
[n*(n+1)*(25584 - 9604*n + 5264*n^2 - 1295*n^3 + 231*n^4 - 21*n^5 + n^6 ) /40320: n in [0..30]]; // G. C. Greubel, Nov 25 2017
-
Maple
seq(sum(binomial(n,k),k=1..8),n=0..33); # Zerinvary Lajos, Dec 14 2007
-
Mathematica
Table[n*(n + 1)*(25584 - 9604*n + 5264*n^2 - 1295*n^3 + 231*n^4 - 21*n^5 + n^6)/40320, {n, 0, 50}] (* G. C. Greubel, Nov 25 2017 *) Table[Total[Binomial[n,Range[8]]],{n,0,40}] (* Harvey P. Dale, Aug 14 2023 *)
-
PARI
for(n=0,30, print1(n*(n+1)*(25584 - 9604*n + 5264*n^2 - 1295*n^3 + 231*n^4 - 21*n^5 + n^6 ) /40320, ", ")) \\ G. C. Greubel, Nov 25 2017
-
Sage
[binomial(n,2)+binomial(n,4)+binomial(n,6)+binomial(n,8) for n in range(1, 35)] # Zerinvary Lajos, May 17 2009
-
Sage
[binomial(n,2)+binomial(n,4)+binomial(n,6)+binomial(n,8)+binomial(n,1)+binomial(n,3)+binomial(n,5)+binomial(n,7)for n in range(0, 34)] # Zerinvary Lajos, May 17 2009
Formula
a(n) = A000581(n) + A000580(n) + A000579(n) + A000389(n) + A000332(n) + A000292(n) + A000217(n) + n. a(n) = A000581(n) + A116082(n).
G.f. ( -x*(2*x^2 - 2*x + 1)*(2*x^4 - 4*x^3 + 6*x^2 - 4*x + 1) ) / (x-1)^9. - R. J. Mathar, Oct 21 2011
a(n) = n*(n+1)*(25584 - 9604*n + 5264*n^2 - 1295*n^3 + 231*n^4 - 21*n^5 + n^6)/40320. - G. C. Greubel, Nov 25 2017