cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116732 a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) with a(0) = a(1) = a(2) = 0, a(3) = 1.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 6, 11, 19, 32, 56, 96, 165, 285, 490, 844, 1454, 2503, 4311, 7424, 12784, 22016, 37913, 65289, 112434, 193620, 333430, 574195, 988811, 1702816, 2932392, 5049824, 8696221, 14975621, 25789274, 44411292, 76479966, 131704911, 226806895
Offset: 0

Views

Author

R. K. Guy, Mar 23 2008

Keywords

Comments

This sequence is an example of a "symmetric" quartic recurrence and has some expected divisibility properties.
a(n-3) counts partially ordered partitions of (n-3) into parts 1,2,3 where only the order of the adjacent 1's and 3's are unimportant (see example). - David Neil McGrath, Jul 25 2015

Examples

			Partially ordered partitions of (n-3) into parts 1,2,3 where only the order of adjacent 1's and 3's are unimportant. E.g., a(n-3)=a(6)=19. These are (33),(321),(312),(231),(123),(132),(3111),(2211),(1122),(1221),(2112),(2121),(1212),(21111),(12111),(11211),(11121),(11112),(111111). - _David Neil McGrath_, Jul 25 2015
G.f. = x^3 + x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 11*x^8 + 19*x^9 + 32*x^10 + ... - _Michael Somos_, Jul 25 2025
		

Crossrefs

Close to A000786 (& A048239), A115992, A115993. Cf. A116201.

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 1, -1}, {0, 0, 0, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
    CoefficientList[Series[x^3/(1-x-x^2-x^3+x^4),{x,0,40}],x] (* Harvey P. Dale, Mar 25 2018 *)
  • PARI
    v=[0,0,0,1];for(i=1,40,v=concat(v,v[#v]+v[#v-1]+v[#v-2]-v[#v-3]));v \\ Derek Orr, Aug 27 2015
    
  • PARI
    {a(n) = if(n<0, -a(2-n), polcoeff(x^3/(1 - x - x^2 - x^3 + x^4 + x*O(x^n)), n))} /* Michael Somos, Jul 25 2025 */

Formula

G.f.: x^3/(x^4 - x^3 - x^2 - x + 1).
a(n) = -a(2-n) for all n in Z. - Michael Somos, Jul 25 2025

Extensions

More terms from Max Alekseyev, Mar 23 2008
Name clarified by Michael Somos, Jul 25 2025