cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116881 Row sums of triangle A116880 (generalized Catalan C(1,2)).

Original entry on oeis.org

1, 4, 23, 150, 1037, 7408, 54035, 399850, 2990105, 22540260, 170991647, 1303789534, 9983164453, 76711854040, 591236890667, 4568611684306, 35382196437041, 274564234870732, 2134337640202295, 16617270658727878
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2006

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(32 x^2 + 12 Sqrt[1 - 8 x] x - 4 x) / (-32 x^3 + Sqrt[1 - 8 x] (8 x^2 + 7 x - 1) - 36 x^2 - 3 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 23 2014 *)
  • Maxima
    a(n):=sum(((k+1)^2*binomial(2*(n+1),n-k)*binomial(n+k+2,n+1))/((n+k+1)*(n+k+2)),k,0,n); /* Vladimir Kruchinin, Nov 23 2014 */

Formula

a(n) = Sum_{m=0..n} A116880(n,m), n>=0.
G.f.: (32*x^2+12*sqrt(1-8*x)*x-4*x)/(-32*x^3+sqrt(1-8*x)*(8*x^2+7*x-1)-36*x^2-3*x+1). - Vladimir Kruchinin, Nov 23 2014
a(n) = sum(k=0..n, ((k+1)^2*binomial(2*(n+1),n-k)*binomial(n+k+2,n+1))/((n+k+1)*(n+k+2))). - Vladimir Kruchinin, Nov 23 2014
a(n) ~ 2^(3*n+3) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 23 2014
Conjecture: n*(3*n-4)*a(n) +(-21*n^2+43*n-10)*a(n-1) -4*(3*n-1)*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jun 22 2016
From Seiichi Manyama, Aug 05 2025: (Start)
a(n) = Sum_{k=0..n} binomial(2*n+1,k) * binomial(2*n-k-1,n-k).
a(n) = [x^n] (1+x)^(2*n+1)/(1-x)^n.
a(n) = [x^n] 1/((1-x)^2 * (1-2*x)^n).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * (n-k+1) * binomial(2*n+1,k).
a(n) = Sum_{k=0..n} 2^k * (n-k+1) * binomial(n+k-1,k). (End)