A116979 Number of distinct representations of primorials as the sum of two primes.
0, 0, 1, 3, 19, 114, 905, 9493, 124180, 2044847, 43755729, 1043468386, 30309948241
Offset: 0
Examples
a(2) = 1 because 2nd primorial = 6 = 3 + 3 uniquely. a(3) = 3 because 3rd primorial = 30 = 7 + 23 = 11 + 19 = 13 + 17. a(4) = 19 because 4th primorial = 210 = 11 + 199 = 13 + 197 = 17 + 193 = 19 + 191 = 29 + 181 = 31 + 179 = 37 + 173 = 43 + 167 = 47 + 163 = 53 + 157 = 59 + 151 = 61 + 149 = 71 + 139 = 73 + 137 = 79 + 131 = 83 + 127 = 97 + 113 = 101 + 109 = 103 + 107.
Links
- Eric Weisstein's World of Mathematics, Primorial.
- Index entries for sequences related to Goldbach conjecture
Crossrefs
Programs
-
Mathematica
n=1; Join[{0,0}, Table[n=n*Prime[k]; cnt=0; Do[If[PrimeQ[2n-Prime[i]],cnt++ ], {i,2,PrimePi[n]}]; cnt, {k,2,10}]] (* T. D. Noe, Apr 28 2006 *)
Formula
Extensions
More terms from T. D. Noe, Apr 28 2006
a(11)-a(12) from Donovan Johnson, Dec 19 2009
Comments