cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117109 Moebius transform of binomial(n+3, 4).

Original entry on oeis.org

1, 4, 14, 30, 69, 107, 209, 295, 480, 641, 1000, 1209, 1819, 2166, 2976, 3546, 4844, 5379, 7314, 8110, 10402, 11645, 14949, 15890, 20405, 21927, 26910, 29055, 35959, 37108, 46375, 48484, 57890, 61196, 73536, 75027, 91389, 93951, 110096, 114260
Offset: 1

Views

Author

Steve Butler, Apr 18 2006

Keywords

Comments

Partial sums of a(n) give A015650(n).

Examples

			a(2)=4 because of the quadruples (1,1,1,1), (1,1,1,2), (1,1,2,2), (1,2,2,2).
		

Crossrefs

Programs

  • Maple
    b34:= unapply(expand(binomial(n+3,4)),n):
    f:= proc(n) local k; uses numtheory;
    add(b34(k)*mobius(n/k),k=divisors(n))
    end proc:
    map(f, [$1..100]); # Robert Israel, May 24 2019
  • Mathematica
    a[n_] := Sum[Binomial[k+3, 4] MoebiusMu[n/k], {k, Divisors[n]}];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 01 2023 *)
  • PARI
    a(n) = sumdiv(n, k, binomial(k+3, 4)*moebius(n/k)); \\ Michel Marcus, Nov 04 2018

Formula

a(n) = |{(x,y,z,w) : 1 <= x <= y <= z <= w <= n, gcd(x,y,z,w,n) = 1}|.
G.f.: Sum_{k>=1} mu(k) * x^k / (1 - x^k)^5. - Ilya Gutkovskiy, Feb 13 2020