A117188 Expansion of (1-x^2)/(1+x^2+x^4).
1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Gregory T. Minton, Linear recurrence sequences satisfying congruence conditions, Proc. Amer. Math. Soc. 142 (2014), no. 7, 2337--2352. MR3195758. See Example 6.13. - _N. J. A. Sloane_, Jul 09 2014
- Index entries for linear recurrences with constant coefficients, signature (0,-1,0,-1).
Crossrefs
Row sums of A117185.
Programs
-
Magma
&cat [[1, 0, -2, 0, 1, 0]^^20]; // Wesley Ivan Hurt, Jun 23 2016
-
Maple
A117188:=n->[1, 0, -2, 0, 1, 0][(n mod 6)+1]: seq(A117188(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016
-
Mathematica
PadRight[{}, 100, {1, 0, -2, 0, 1, 0}] (* Wesley Ivan Hurt, Jun 23 2016 *) LinearRecurrence[{0,-1,0,-1},{1,0,-2,0},100] (* Harvey P. Dale, Jun 25 2022 *)
Formula
G.f.: (1 - 2*x^2 + x^4)/(1-x^6).
a(n) = (1 + (-1)^n)/(-2 + 4^(floor((n-1)/3) - 2*floor((n-1)/6))). - Tani Akinari, Aug 02 2013
a(n) = -a(n-2) - a(n-4) for n >= 4. - N. J. A. Sloane, Jul 09 2014
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-6) for n>5.
a(n) = cos(n*Pi/2) * (cos(n*Pi/6) + sqrt(3)*sin(n*Pi/6)). (End)
E.g.f.: cos(sqrt(3)*x/2)*cosh(x/2) - sqrt(3)*sin(sqrt(3)*x/2)*sinh(x/2). - Ilya Gutkovskiy, Jun 27 2016
a(n) = cos((n+1)*Pi/3) - cos(2*(n+1)*Pi/3). - Ridouane Oudra, Dec 14 2021
Comments