cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A117344 Duplicate of A117204.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 17, 19, 21, 23, 26, 29, 30, 33, 34, 35, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 59, 61, 65, 66, 69, 70, 71, 74, 77, 78, 79, 82, 83, 86, 89, 91
Offset: 1

Views

Author

Keywords

A117203 Odd squarefree positive integers k such that (k-1)/2 is also squarefree.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 21, 23, 29, 31, 35, 39, 43, 47, 53, 59, 61, 67, 69, 71, 77, 79, 83, 85, 87, 93, 95, 103, 107, 111, 115, 119, 123, 131, 133, 139, 141, 143, 149, 155, 157, 159, 165, 167, 173, 179, 183, 187, 191, 195, 203, 205, 211, 213, 215, 219, 221, 223, 227
Offset: 1

Views

Author

Leroy Quet, Mar 02 2006

Keywords

Comments

The asymptotic density of this sequence is (3/4)*A065474 = 0.2419755742... (Erdős and Ivić, 1987). - Amiram Eldar, Feb 17 2021

Examples

			21 and (21-1)/2 = 10 are both squarefree, so 21 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if n mod 2 =1 and abs(mobius(n))>0 and abs(mobius((n-1)/2))>0 then n else fi end: seq(a(n),n=2..300); # Emeric Deutsch, Mar 07 2006
  • Mathematica
    fQ[n_] := Max @@ Last /@ FactorInteger@n < 2; Select[ 2Range@113 + 1, fQ@# && fQ[(# - 1)/2] &] (* Robert G. Wilson v, Apr 18 2006 *)
  • PARI
    for (i=1,100,if(issquarefree(2*i+1) && issquarefree(i),print1(2*i+1,","))) \\ Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Mar 23 2006

Formula

a(n) = 2*A117204(n) + 1.

Extensions

More terms from Emeric Deutsch and Reinhard Zumkeller, Mar 07 2006
More terms from Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Mar 23 2006
More terms from Robert G. Wilson v, Apr 18 2006

A117206 Squarefree positive integers k such that 2*k-1 is also squarefree.

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 11, 15, 17, 19, 21, 22, 26, 29, 30, 31, 33, 34, 35, 37, 39, 42, 43, 46, 47, 51, 53, 55, 57, 58, 62, 65, 66, 67, 69, 70, 71, 73, 78, 79, 82, 83, 87, 89, 91, 93, 94, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 114, 115, 118, 119, 127, 129, 130, 133
Offset: 1

Views

Author

Leroy Quet, Mar 02 2006

Keywords

Comments

The asymptotic density of this sequence is (3/2)*A065474 = 0.4839511484... (Erdős and Ivić, 1987). - Amiram Eldar, Feb 17 2021

Examples

			10 and 2*10 - 1 = 19 are both squarefree, so 10 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if abs(mobius(n))>0 and abs(mobius(2*n-1))>0 then n else fi end: seq(a(n),n=1..160); # Emeric Deutsch, Mar 08 2006
  • Mathematica
    Select[Range[200],And@@SquareFreeQ/@{#,2#-1}&] (* Harvey P. Dale, Dec 17 2012 *)

Formula

a(n) = (A117205(n) + 1)/2.

Extensions

More terms from Emeric Deutsch, Mar 08 2006

A115170 Non-cubefree numbers k such that 2k+1 is also non-cubefree (A046099).

Original entry on oeis.org

40, 256, 312, 472, 688, 904, 1120, 1200, 1312, 1336, 1552, 1768, 1984, 2187, 2200, 2312, 2416, 2456, 2632, 2848, 2875, 3064, 3280, 3312, 3429, 3496, 3712, 3928, 3944, 4144, 4312, 4360, 4576, 4792, 5008, 5224, 5312, 5440, 5562, 5656, 5872, 6088, 6250, 6304, 6312, 6345, 6520, 6655, 6688, 6736, 6952
Offset: 1

Views

Author

Jonathan Vos Post, Mar 03 2006

Keywords

Comments

The probability that a random integer is cubefree is 1/zeta(3) (see A088453).

Examples

			312 is there because 2^3 divides 312 and 5^3 divides 312*2+1.
		

Crossrefs

Cf. A005384 (n and 2n+1 prime), A046099, A088453, A111153 (n and 2n+1 semiprime), A117204 (n and 2n+1 squarefree), A115228.

Programs

  • Mathematica
    noncfQ[n_] := AnyTrue[FactorInteger[n][[;; , 2]], # > 2 &]; Select[Range[7000], noncfQ[#] && noncfQ[2*# + 1] &] (* Amiram Eldar, May 25 2025 *)

Extensions

Edited by Don Reble, Mar 05 2006
2875 inserted by R. J. Mathar, Dec 08 2015

A062837 Numbers k such that k, 2*k+1, 3*k+1 are all squarefree.

Original entry on oeis.org

2, 3, 6, 7, 10, 11, 14, 15, 19, 23, 26, 30, 34, 35, 38, 39, 42, 43, 46, 47, 51, 55, 59, 66, 70, 71, 74, 78, 79, 82, 86, 91, 95, 102, 106, 107, 110, 111, 115, 118, 119, 123, 127, 131, 134, 138, 142, 143, 146, 151, 154, 155, 159, 167, 170, 174, 178, 179, 182, 186
Offset: 1

Views

Author

Jason Earls, Jul 21 2001

Keywords

Comments

The asymptotic density of this sequence is (7/3) * Product_{p prime} (1 - 3/p^2) = (7/3) * A206256 = 0.292802955446... (Tsang, 1985). - Amiram Eldar, Feb 26 2024

Crossrefs

Subsequence of A005117 and A117204.
Cf. A206256.

Programs

  • Mathematica
    Select[Range[200],AllTrue[{#,2#+1,3#+1},SquareFreeQ]&] (* Harvey P. Dale, Oct 20 2014 *)
  • PARI
    j=[]; for(n=1,200, if(issquarefree(n) && issquarefree(2*n+1) && issquarefree(3*n+1),j=concat(j,n))); j
Showing 1-5 of 5 results.