A117344 Duplicate of A117204.
1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 17, 19, 21, 23, 26, 29, 30, 33, 34, 35, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 59, 61, 65, 66, 69, 70, 71, 74, 77, 78, 79, 82, 83, 86, 89, 91
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
21 and (21-1)/2 = 10 are both squarefree, so 21 is in the sequence.
with(numtheory): a:=proc(n) if n mod 2 =1 and abs(mobius(n))>0 and abs(mobius((n-1)/2))>0 then n else fi end: seq(a(n),n=2..300); # Emeric Deutsch, Mar 07 2006
fQ[n_] := Max @@ Last /@ FactorInteger@n < 2; Select[ 2Range@113 + 1, fQ@# && fQ[(# - 1)/2] &] (* Robert G. Wilson v, Apr 18 2006 *)
for (i=1,100,if(issquarefree(2*i+1) && issquarefree(i),print1(2*i+1,","))) \\ Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Mar 23 2006
10 and 2*10 - 1 = 19 are both squarefree, so 10 is in the sequence.
with(numtheory): a:=proc(n) if abs(mobius(n))>0 and abs(mobius(2*n-1))>0 then n else fi end: seq(a(n),n=1..160); # Emeric Deutsch, Mar 08 2006
Select[Range[200],And@@SquareFreeQ/@{#,2#-1}&] (* Harvey P. Dale, Dec 17 2012 *)
312 is there because 2^3 divides 312 and 5^3 divides 312*2+1.
noncfQ[n_] := AnyTrue[FactorInteger[n][[;; , 2]], # > 2 &]; Select[Range[7000], noncfQ[#] && noncfQ[2*# + 1] &] (* Amiram Eldar, May 25 2025 *)
Select[Range[200],AllTrue[{#,2#+1,3#+1},SquareFreeQ]&] (* Harvey P. Dale, Oct 20 2014 *)
j=[]; for(n=1,200, if(issquarefree(n) && issquarefree(2*n+1) && issquarefree(3*n+1),j=concat(j,n))); j
Comments