A117221 Number of partitions of 3-smooth numbers.
1, 2, 3, 5, 11, 22, 30, 77, 231, 385, 1575, 3010, 8349, 17977, 147273, 386155, 1741630, 5392783, 18004327, 118114304, 483502844, 4351078600, 22540654445, 129913904637, 1987276856363, 15285151248481, 133978259344888, 365749566870782, 3925922161489422, 49005643635237875
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
PartitionsP /@ Select[Range[1000], AllTrue[FactorInteger[#][[All, 1]], # <= 3 &] &] (* Jean-François Alcover, Oct 13 2021 *)
-
PARI
\\ here is(n) is test for A003586 inclusion. is(n)={forprime(p=2, 3, n/=p^valuation(n,p)); n==1} seq(n)={my(A=List(), i=0); while(#A
Andrew Howroyd, Jan 02 2020 -
Python
from sympy import integer_log, npartitions def A117221(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) return npartitions(bisection(f,n,n)) # Chai Wah Wu, Sep 16 2024
Extensions
More terms from Michel Marcus, Apr 20 2019