cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117221 Number of partitions of 3-smooth numbers.

Original entry on oeis.org

1, 2, 3, 5, 11, 22, 30, 77, 231, 385, 1575, 3010, 8349, 17977, 147273, 386155, 1741630, 5392783, 18004327, 118114304, 483502844, 4351078600, 22540654445, 129913904637, 1987276856363, 15285151248481, 133978259344888, 365749566870782, 3925922161489422, 49005643635237875
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 04 2006

Keywords

Crossrefs

Programs

  • Mathematica
    PartitionsP /@ Select[Range[1000], AllTrue[FactorInteger[#][[All, 1]], # <= 3 &] &] (* Jean-François Alcover, Oct 13 2021 *)
  • PARI
    \\ here is(n) is test for A003586 inclusion.
    is(n)={forprime(p=2, 3, n/=p^valuation(n,p)); n==1}
    seq(n)={my(A=List(), i=0); while(#AAndrew Howroyd, Jan 02 2020
    
  • Python
    from sympy import integer_log, npartitions
    def A117221(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1))
        return npartitions(bisection(f,n,n)) # Chai Wah Wu, Sep 16 2024

Formula

a(n) = A000041(A003586(n)).

Extensions

More terms from Michel Marcus, Apr 20 2019