A117224 Numbers for which the square and the cube have the same digital sum.
0, 1, 3, 6, 10, 24, 28, 30, 37, 60, 64, 81, 87, 93, 100, 114, 118, 136, 163, 219, 222, 228, 234, 240, 252, 258, 267, 273, 276, 280, 291, 294, 300, 312, 316, 342, 343, 370, 384, 387, 433, 447, 468, 469, 477, 478, 507, 525, 534, 537, 541, 585, 591, 600, 606, 613
Offset: 1
Examples
24 is in the sequence because 24^2 = 576, 24^3 = 13824 and 5 + 7 + 6 = 1 + 3 + 8 + 2 + 4.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A058369.
Programs
-
Magma
[n: n in [0..613] | &+Intseq(n^2) eq &+Intseq(n^3)]; // Bruno Berselli, Jun 28 2011
-
Maple
a:=proc(n) local nn,nnn: nn:=convert(n^2,base,10): nnn:=convert(n^3,base,10): if sum(nn[i],i=1..nops(nn))=sum(nnn[j],j=1..nops(nnn)) then n else fi end: seq(a(n),n=0..620); # Emeric Deutsch, Apr 27 2006
-
Mathematica
scdsQ[n_]:=Total[IntegerDigits[n^2]]==Total[IntegerDigits[n^3]]; Select[ Range[ 0,700],scdsQ] (* Harvey P. Dale, Jan 23 2019 *)
-
PARI
is(n) = sumdigits(n^2) == sumdigits(n^3) \\ David A. Corneth, Sep 05 2020
Extensions
Offset corrected by Arkadiusz Wesolowski, Jun 28 2011