cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117260 Triangle T, read by rows, where matrix inverse T^-1 has -2^n in the secondary diagonal: [T^-1](n+1,n) = -2^n, with all 1's in the main diagonal and zeros elsewhere.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 8, 8, 4, 1, 64, 64, 32, 8, 1, 1024, 1024, 512, 128, 16, 1, 32768, 32768, 16384, 4096, 512, 32, 1, 2097152, 2097152, 1048576, 262144, 32768, 2048, 64, 1, 268435456, 268435456, 134217728, 33554432, 4194304, 262144, 8192, 128, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 14 2006

Keywords

Comments

More generally, if a lower triangular matrix T to the power p is given by: [T^p](n,k) = C(r,n-k)*p^(n-k)*q^(n*(n-1)/2-k*(k-1)/2) then, for all m, [T^m](n,k) = [prod_{j=0..n-k-1}(m*r-p*j)]/(n-k)!*q^(n*(n-1)/2-k*(k-1)/2) for n>k>=0, with T(n,n) = 1. This triangle results when m=1, p=-1, q=2, r=1.
T(n,k) is the number of simple labeled graphs G on [n] such that the subgraph of G induced by the vertices labeled 1,2,...,k is a clique of size k. Cf A277219. - Geoffrey Critzer, May 05 2024

Examples

			Triangle T begins:
  1;
  1,1;
  2,2,1;
  8,8,4,1;
  64,64,32,8,1;
  1024,1024,512,128,16,1;
  32768,32768,16384,4096,512,32,1;
  2097152,2097152,1048576,262144,32768,2048,64,1;
  268435456,268435456,134217728,33554432,4194304,262144,8192,128,1;
Matrix inverse T^-1 has -2^n in the 2nd diagonal:
  1,
  -1,1,
  0,-2,1,
  0,0,-4,1,
  0,0,0,-8,1,
  0,0,0,0,-16,1,
  0,0,0,0,0,-32,1,
  ...
		

Crossrefs

Cf. A006125 (column 0); variants: A117250 (p=q=2), A117252 (p=q=3), A117254 (p=q=4), A117256 (p=q=5), A117258 (p=2, q=4), A117262 (p=-1, q=3), A117265 (p=-2, q=2).

Programs

  • Maple
    T := (n, k) -> 2^(((n + k - 1)*(n - k))/2):
    seq(seq(T(n, k), k = 0..n), n = 0..8);  # Peter Luschny, Dec 31 2024
  • Mathematica
    Flatten[Table[2^((n(n-1))/2-(k(k-1))/2),{n,0,10},{k,0,n}]] (* Harvey P. Dale, Sep 19 2013 *)
  • PARI
    {T(n,k)=local(m=1,p=-1,q=2,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}

Formula

T(n,k) = 2^(n*(n-1)/2 - k*(k-1)/2).