cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117378 Expansion of (1-4*x)/(1-x+x^2).

Original entry on oeis.org

1, -3, -4, -1, 3, 4, 1, -3, -4, -1, 3, 4, 1, -3, -4, -1, 3, 4, 1, -3, -4, -1, 3, 4, 1, -3, -4, -1, 3, 4, 1, -3, -4, -1, 3, 4, 1, -3, -4, -1, 3, 4, 1, -3, -4, -1, 3, 4, 1, -3, -4, -1, 3, 4, 1, -3, -4, -1, 3, 4, 1, -3, -4, -1, 3, 4, 1, -3, -4, -1, 3, 4, 1, -3
Offset: 0

Views

Author

Paul Barry, Mar 10 2006

Keywords

Comments

Row sums of number triangle A117377.
Period 6: repeat [1, -3, -4, -1, 3, 4]. - Philippe Deléham, Nov 03 2008

Crossrefs

Cf. A117377.

Programs

Formula

G.f.: (1-4*x)/(1-x+x^2).
a(n) = Sum_{k=0..n} (-1)^(n-k) * ( C(k,n-k) + 4*C(k,n-k-1) ).
a(n) = a(n-1) - a(n-2) for n>1. [Philippe Deléham, Nov 03 2008]
a(n) = (1+(-n mod 3))^(n mod 3)*(-1)^floor((n+2)/3). - Wesley Ivan Hurt, Aug 31 2014
a(n) = (3*cos(n*Pi/3) - 7*sqrt(3)*sin(n*Pi/3))/3. - Wesley Ivan Hurt, Jun 23 2016
E.g.f.: (3*cos(sqrt(3)*x/2) - 7*sqrt(3)*sin(sqrt(3)*x/2))*exp(x/2)/3. - Ilya Gutkovskiy, Jun 27 2016

A117380 Riordan array (1/(1-4*x*c(x)),xc(x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 4, 1, 20, 5, 1, 104, 26, 6, 1, 548, 137, 33, 7, 1, 2904, 726, 178, 41, 8, 1, 15432, 3858, 954, 228, 50, 9, 1, 82128, 20532, 5100, 1242, 288, 60, 10, 1, 437444, 109361, 27233, 6701, 1601, 359, 71, 11, 1, 2331128, 582782, 145338, 35977, 8744, 2043, 442, 83, 12
Offset: 0

Views

Author

Paul Barry, Mar 10 2006

Keywords

Comments

Triangle factors as (1,xc(x))*(1/(1-4x),x). Inverse of A117377. First row is A076035. Second row is A076025(n)-0^n. Row sums are A076025(n+1). Diagonal sums are A117381.

Examples

			Triangle begins
1,
4, 1,
20, 5, 1,
104, 26, 6, 1,
548, 137, 33, 7, 1,
2904, 726, 178, 41, 8, 1
Production array begins
4, 1
4, 1, 1
4, 1, 1, 1
4, 1, 1, 1, 1
4, 1, 1, 1, 1, 1
4, 1, 1, 1, 1, 1, 1
4, 1, 1, 1, 1, 1, 1, 1
4, 1, 1, 1, 1, 1, 1, 1, 1
... - _Philippe Deléham_, Mar 05 2013
		

Formula

Number triangle T(0,0)=1, T(n,k)=[k<=n]*sum{j=0..n, (j/(n-j))*C(2n-j,n-j)[k<=j]*4^(j-k)}

A117379 Expansion of (1-4x)/(1-x^2+x^3).

Original entry on oeis.org

1, -4, 1, -5, 5, -6, 10, -11, 16, -21, 27, -37, 48, -64, 85, -112, 149, -197, 261, -346, 458, -607, 804, -1065, 1411, -1869, 2476, -3280, 4345, -5756, 7625, -10101, 13381, -17726, 23482, -31107, 41208
Offset: 0

Views

Author

Paul Barry, Mar 10 2006

Keywords

Comments

Diagonal sums of number triangle A117377.

Programs

  • Mathematica
    CoefficientList[Series[(1-4x)/(1-x^2+x^3),{x,0,40}],x] (* or *) LinearRecurrence[ {0,1,-1},{1,-4,1},40] (* Harvey P. Dale, Nov 08 2022 *)

Formula

a(n)=sum{k=0..floor(n/2), (-1)^n*(C(k,n-2k)+4*C(k, n-2k-1))}
Showing 1-3 of 3 results.