cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117401 Triangle T(n,k) = 2^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 64, 64, 16, 1, 1, 32, 256, 512, 256, 32, 1, 1, 64, 1024, 4096, 4096, 1024, 64, 1, 1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1, 1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2006

Keywords

Comments

Matrix power T^m satisfies: [T^m](n,k) = [T^m](n-k,0)*T(n,k) for all m and so the triangle has an invariant character.

Examples

			A(x,y) = 1/(1-xy) + x/(1-2xy) + x^2/(1-4xy) + x^3/(1-8xy) + ...
Triangle begins:
  1;
  1,   1;
  1,   2,     1;
  1,   4,     4,      1;
  1,   8,    16,      8,       1;
  1,  16,    64,     64,      16,       1;
  1,  32,   256,    512,     256,      32,      1;
  1,  64,  1024,   4096,    4096,    1024,     64,     1;
  1, 128,  4096,  32768,   65536,   32768,   4096,   128,   1;
  1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1;
		

Crossrefs

Cf. A117402 (row sums), A117403 (antidiagonal sums), A002416 (central terms).
Cf. this sequence (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15).

Programs

  • Magma
    A117401:= func< n, k, m | (m+2)^(k*(n-k)) >;
    [A117401(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
    
  • Mathematica
    Table[2^((n-k)k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 09 2017 *)
  • PARI
    T(n,k)=if(n
    				
  • Sage
    def A117401(n, k, m): return (m+2)^(k*(n-k))
    flatten([[A117401(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021

Formula

G.f.: A(x,y) = Sum_{n>=0} x^n/(1 - 2^n*x*y).
G.f. satisfies: A(x,y) = 1/(1 - x*y) + x*A(x,2*y).
Equals ConvOffsStoT transform of the 2^n series: (1, 2, 4, 8, ...); e.g., ConvOffs transform of (1, 2, 4, 8) = (1, 8, 16, 8, 1). - Gary W. Adamson, Apr 21 2008
T(n,k) = (1/n)*( 2^(n-k)*k*T(n-1,k-1) + 2^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 20 2014
Let E(x) = Sum_{n>=0} x^n/2^C(n,2). Then E(x)*E(y*x) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/2^C(n,2). - Geoffrey Critzer, May 31 2020
T(n, k, m) = (m+2)^(k*(n-k)) with m = 0. - G. C. Greubel, Jun 28 2021