A117401 Triangle T(n,k) = 2^(k*(n-k)), read by rows.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 64, 64, 16, 1, 1, 32, 256, 512, 256, 32, 1, 1, 64, 1024, 4096, 4096, 1024, 64, 1, 1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1, 1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1
Offset: 0
Examples
A(x,y) = 1/(1-xy) + x/(1-2xy) + x^2/(1-4xy) + x^3/(1-8xy) + ... Triangle begins: 1; 1, 1; 1, 2, 1; 1, 4, 4, 1; 1, 8, 16, 8, 1; 1, 16, 64, 64, 16, 1; 1, 32, 256, 512, 256, 32, 1; 1, 64, 1024, 4096, 4096, 1024, 64, 1; 1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1; 1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Crossrefs
Programs
-
Magma
A117401:= func< n, k, m | (m+2)^(k*(n-k)) >; [A117401(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
Mathematica
Table[2^((n-k)k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 09 2017 *)
-
PARI
T(n,k)=if(n
-
Sage
def A117401(n, k, m): return (m+2)^(k*(n-k)) flatten([[A117401(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
Formula
G.f.: A(x,y) = Sum_{n>=0} x^n/(1 - 2^n*x*y).
G.f. satisfies: A(x,y) = 1/(1 - x*y) + x*A(x,2*y).
Equals ConvOffsStoT transform of the 2^n series: (1, 2, 4, 8, ...); e.g., ConvOffs transform of (1, 2, 4, 8) = (1, 8, 16, 8, 1). - Gary W. Adamson, Apr 21 2008
T(n,k) = (1/n)*( 2^(n-k)*k*T(n-1,k-1) + 2^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 20 2014
Let E(x) = Sum_{n>=0} x^n/2^C(n,2). Then E(x)*E(y*x) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/2^C(n,2). - Geoffrey Critzer, May 31 2020
T(n, k, m) = (m+2)^(k*(n-k)) with m = 0. - G. C. Greubel, Jun 28 2021
Comments