A117441 Periodic with repeating part {1,1,0,1,-1,0,-1,-1,0,-1,1,0}.
1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, 1, 0, 1, -1, 0
Offset: 0
Examples
G.f. = 1 + x + x^3 - x^4 - x^6 - x^7 - x^9 + x^10 + x^12 + x^13 + x^15 + ...
Links
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,-1).
Programs
-
Mathematica
a[1] := 1; a[2] := 1; a[n_] := a[n] = a[n - 2] + (-1)^(n) a[n - 1]; Array[a, 100] (* José María Grau Ribas, Jan 08 2012 *) PadRight[{},84,{1,1,0,1,-1,0,-1,-1,0,-1,1,0}] (* Harvey P. Dale, Mar 30 2012 *) a[ n_] := KroneckerSymbol[ -6, 2 n + 5]; (* Michael Somos, Jul 18 2015 *) LinearRecurrence[{0, 1, 0, -1},{1, 1, 0, 1},78] (* Ray Chandler, Aug 25 2015 *)
-
PARI
Vec((1+x-x^2)/(1-x^2+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 10 2012
-
PARI
{a(n) = kronecker( -6, 2*n + 5)}; /* Michael Somos, Jul 18 2015 */
Formula
G.f.: (1+x-x^2)/(1-x^2+x^4).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*(cos(Pi*(n-2*k)/2)+sin(Pi*(n-2*k)/2)).
a(1)=a(2)=1; a(n) = a(n-2) + (-1)^n*a(n-1). - José María Grau Ribas, Jan 08 2012
Extensions
More terms from Sean A. Irvine, Sep 26 2011
Comments