A117575 Expansion of (1-x^3)/((1-x)*(1+2*x^2)).
1, 1, -1, -2, 2, 4, -4, -8, 8, 16, -16, -32, 32, 64, -64, -128, 128, 256, -256, -512, 512, 1024, -1024, -2048, 2048, 4096, -4096, -8192, 8192, 16384, -16384, -32768, 32768, 65536, -65536, -131072, 131072, 262144, -262144, -524288, 524288
Offset: 0
Examples
0/1, 1/1 1/1, 1/2, 0/2, -1/4, -1/4, -1/8, ... 1/1, 0/1, -1/2, -1/2, -1/4, 0/4, 1/8, 1/8, ... -1/1, -1/2, 0/2, 1/4, 1/4, 1/8, 0/8, -1/16, ... 1/2, 1/2, 1/4, 0/4 -1/8, -1/8, -1/16, 0/16, ... 0/2, -1/4, -1/4, -1/8, 0/8, 1/16, 1/16, 1/32, ... -1/4, 0/4, 1/8, 1/8, 1/16, 0/16, -1/32, -1/32, ... 1/4, 1/8, 0/8, -1/16, -1/16, -1/32, 0/32, 1/64, ... -1/8, -1/8, -1/16, 0/16, 1/32, 1/32, 1/64, 0/64. - _Paul Curtz_, Oct 24 2012
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,-2).
Crossrefs
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022
Programs
-
Magma
[1] cat [(-1)^Floor(n/2)*2^Floor((n-1)/2): n in [1..50]]; // G. C. Greubel, Apr 19 2023
-
Mathematica
CoefficientList[Series[(1-x^3)/((1-x)(1+2x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{0,-2},{1,1,-1},45] (* Harvey P. Dale, Apr 09 2018 *)
-
PARI
a(n)=if(n,(-1)^(n\2)<<((n-1)\2),1) \\ Charles R Greathouse IV, Jan 31 2012
-
SageMath
def A117575(n): return 1 if (n==0) else (-1)^(n//2)*2^((n-1)//2) [A117575(n) for n in range(51)] # G. C. Greubel, Apr 19 2023
Formula
a(n) = a(n-1) - 2*a(n-2) + 2*a(n-3) for n >= 3.
a(n) = (cos(Pi*n/2) + sin(Pi*n/2)) * (2^((n-1)/2)*(1-(-1)^n)/2 + 2^((n-2)/2)*(1+(-1)^n)/2 + 0^n/2).
a(n+1) = Sum_{k=0..n} A122016(n,k)*(-1)^k. - Philippe Deléham, Jan 31 2012
E.g.f.: (1 + cos(sqrt(2)*x) + sqrt(2)*sin(sqrt(2)*x))/2. - Stefano Spezia, Feb 05 2023
a(n) = (-1)^floor(n/2)*2^floor((n-1)/2), with a(0) = 1. - G. C. Greubel, Apr 19 2023
Comments