cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117641 Number of 3-Motzkin paths of length n with no level steps at height 0.

Original entry on oeis.org

1, 0, 1, 3, 11, 42, 167, 684, 2867, 12240, 53043, 232731, 1031829, 4615542, 20805081, 94410363, 430945739, 1977366192, 9115261211, 42195093993, 196060049129, 914110333422, 4275222950221, 20051858039718, 94294269673861
Offset: 0

Views

Author

Louis Shapiro, Apr 10 2006

Keywords

Comments

Hankel transform of this sequence forms A000012 = [1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007

Examples

			The a(4) = 11 paths are UUDD, UDUD and 9 of the form UXYD where each of X and Y are level steps in any of three colors.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+3*x-Sqrt(1-6*x+5*x^2))/(2*x*(3+x)) )); // G. C. Greubel, Apr 04 2019
    
  • Mathematica
    CoefficientList[ Series[(1 + 3x - Sqrt[1 - 6x + 5x^2])/(2x^2 + 6x), {x, 0, 25}], x] (* Robert G. Wilson v *)
  • Maxima
    a(n):=sum(3^(n-2*j)*binomial(n+1,j)*binomial(n-j-1,n-2*j),j,0,floor(n/2))/(n+1); /*  Vladimir Kruchinin, Apr 04 2019 */
    
  • PARI
    my(x='x+O('x^30)); Vec( (1+3*x-sqrt(1-6*x+5*x^2))/(2*x*(3+x)) ) \\ G. C. Greubel, Apr 04 2019
    
  • Sage
    ((1+3*x-sqrt(1-6*x+5*x^2))/(2*x*(3+x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 04 2019

Formula

G.f.: (1 +3*x -sqrt(1 -6*x +5*x^2))/(2*x*(3+x)).
G.f. as continued fraction is 1/(1-0*x-x^2/(1-3*x-x^2/(1-3*x-x^2/(1-3*x-x^2/(.....))))). - Paul Barry, Dec 02 2008
a(n) = A126970(n,0). - Philippe Deléham, Nov 24 2009
a(n) = Sum_{k=0..n} A091965(n,k)*(-3)^k. - Philippe Deléham, Nov 28 2009
a(n) = Sum_{k=1..n} Sum_{j=0..floor((n-2*k)/2)} 3^(n-2*k-2*j)*(k/(k+2*j))*binomial(k+2*j,j)*binomial(n-k-1,n-2*k-2*j). - José Luis Ramírez Ramírez, Mar 22 2012
D-finite with recurrence: 3*(n+1)*a(n) +(-17*n+10)*a(n-1) +9*(n-3)*a(n-2) +5*(n-2)*a(n-3)=0. - R. J. Mathar, Dec 02 2012
a(n) ~ 5^(n+3/2) / (32 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
a(n) = 1/(n+1)*Sum_{j=0..floor(n/2)} 3^(n-2*j)*C(n+1,j)*C(n-j-1,n-2*j). - Vladimir Kruchinin, Apr 04 2019