A117651 A002415 and A052472 interlaced.
1, 0, 2, 1, 0, 6, 10, 20, 35, 50, 84, 105, 168, 196, 300, 336, 495, 540, 770, 825, 1144, 1210, 1638, 1716, 2275, 2366, 3080, 3185, 4080, 4200, 5304, 5440, 6783, 6936, 8550, 8721, 10640, 10830, 13090, 13300, 15939, 16170, 19228, 19481, 23000, 23276, 27300
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x -2*x^2+3*x^3-3*x^4+4*x^5+16*x^6-16*x^7 -14*x^8+14*x^9+4*x^10-4*x^11 )/( (1+x)^4*(1-x)^5) )); // G. C. Greubel, May 19 2019 -
Mathematica
f[n_]:= n*(n+1)*(n+2)*(n-3)/12; g[n_]:= n^2*(n^2 -1)/12; Table[{Abs[f[n]], g[n]}, {n, 1, 25}]//Flatten LinearRecurrence[{1,4,-4,-6,6,4,-4,-1,1}, {1,0,2,1,0,6,10,20,35,50,84, 105}, 50] (* Harvey P. Dale, Mar 05 2016 *)
-
PARI
my(x='x+O('x^50)); Vec((1-x-2*x^2+3*x^3-3*x^4+4*x^5+16*x^6-16*x^7 -14*x^8+14*x^9+4*x^10-4*x^11 )/((1+x)^4*(1-x)^5)) \\ G. C. Greubel, May 19 2019
-
Sage
((1-x-2*x^2+3*x^3-3*x^4+4*x^5+16*x^6-16*x^7 -14*x^8+14*x^9+4*x^10 -4*x^11 )/((1+x)^4*(1-x)^5)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, May 19 2019
Formula
G.f.: (1 -x -2*x^2 +3*x^3 -3*x^4 +4*x^5 +16*x^6 -16*x^7 -14*x^8 +14*x^9 +4*x^10 -4*x^11 )/((1+x)^4*(1-x)^5). - Colin Barker, Mar 15 2013
a(n) = abs((2*n^4 +12*n^3 -2*n^2 -132*n -195 +(4*n^3 -6*n^2 -124*n -189)*(-1)^n))/384. - Luce ETIENNE, Jun 01 2015
a(n) = abs((-3*(65 +63*(-1)^n) -4*(33 +31*(-1)^n)*n -2*(1+3*(-1)^n)*n^2 +4*(3 +(-1)^n)*n^3 +2*n^4)/384). - Colin Barker, Jun 02 2015
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 11. - Charles R Greathouse IV, Jun 02 2015