cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117683 Triangle T(n,k) = A049614(n)/(A049614(k)*A049614(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 4, 4, 1, 1, 6, 6, 24, 6, 6, 1, 1, 6, 6, 6, 6, 1, 1, 8, 8, 48, 12, 48, 8, 8, 1, 9, 72, 72, 108, 108, 72, 72, 9, 1, 10, 90, 720, 180, 1080, 180, 720, 90, 10, 1, 1, 10, 90, 180, 180, 180, 180, 90, 10, 1, 1, 12, 12, 120, 270, 2160, 360, 2160, 270, 120, 12, 12, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 12 2006

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  1,  1;
  4,  4,  4,   1;
  1,  4,  4,   1,   1;
  6,  6, 24,   6,   6,  1;
  1,  6,  6,   6,   6,  1,  1;
  8,  8, 48,  12,  48,  8,  8,  1;
  9, 72, 72, 108, 108, 72, 72,  9,  1;
		

Crossrefs

Programs

  • Magma
    A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >;
    A117683:= func< n,k | A049614(n)/(A049614(k)*A049614(n-k)) >;
    [A117683(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 21 2023
    
  • Mathematica
    f[n_]:= If[PrimeQ[n], 1, n];
    cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
    T[n_, k_]:= T[n, k]= cf[n]/(cf[k]*cf[n-k]);
    Table[T[n, k], {n,12}, {k,n}]//Flatten
  • PARI
    primorial(n)=prod(i=1,primepi(n),prime(i))
    T(n,m)=binomial(n,m)*primorial(m)*primorial(n-m)/primorial(n) \\ Charles R Greathouse IV, Jan 16 2012
    
  • SageMath
    def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1, 1+prime_pi(n)))
    def A117683(n,k): return A049614(n)/(A049614(k)*A049614(n-k))
    flatten([[A117683(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 21 2023

Formula

T(n,k) = A049614(n)/(A049614(k)*A049614(n-k)), for 1 <= k <= n, n >= 1.
Sum_{k=1..n} T(n, k) = A117684(n).

Extensions

Edited by the Associate Editors of the OEIS, Aug 18 2009
Edited by G. C. Greubel, Jul 21 2023