cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117692 Triangle T(n,k) = A034386(n)^2/(A034386(k)*A034386(n-k)), 1 <= k <= n, read by rows.

Original entry on oeis.org

1, 4, 2, 18, 18, 6, 6, 9, 6, 6, 150, 75, 75, 150, 30, 30, 75, 25, 75, 30, 30, 1470, 735, 1225, 1225, 735, 1470, 210, 210, 735, 245, 1225, 245, 735, 210, 210, 210, 105, 245, 245, 245, 245, 105, 210, 210, 210, 105, 35, 245, 49, 245, 35, 105, 210, 210
Offset: 1

Views

Author

Roger L. Bagula, Apr 12 2006

Keywords

Examples

			The triangle starts in row n=1 as:
     1;
     4,   2;
    18,  18,    6;
     6,   9,    6,    6;
   150,  75,   75,  150,  30;
    30,  75,   25,   75,  30,   30;
  1470, 735, 1225, 1225, 735, 1470, 210;
		

Crossrefs

Cf. A034386.

Programs

  • Magma
    A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1, n)) >;
    [A034386(n)^2/(A034386(k)*A034386(n-k)): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 22 2023
    
  • Mathematica
    f[n_]:= If[PrimeQ[n], n, 1];
    cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A034386 *)
    T[n_, k_]:= T[n, k]= cf[n]^2/(cf[k]*cf[n-k]);
    Table[T[n,k], {n, 12}, {k,n}]//Flatten
  • SageMath
    def A034386(n): return sloane.A002110(prime_pi(n))
    def T(n,k): return A034386(n)^2/(A034386(k)*A034386(n-k))
    flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 22 2023

Extensions

Offset corrected by the Assoc. Eds. of the OEIS, Jun 27 2010