A117692 Triangle T(n,k) = A034386(n)^2/(A034386(k)*A034386(n-k)), 1 <= k <= n, read by rows.
1, 4, 2, 18, 18, 6, 6, 9, 6, 6, 150, 75, 75, 150, 30, 30, 75, 25, 75, 30, 30, 1470, 735, 1225, 1225, 735, 1470, 210, 210, 735, 245, 1225, 245, 735, 210, 210, 210, 105, 245, 245, 245, 245, 105, 210, 210, 210, 105, 35, 245, 49, 245, 35, 105, 210, 210
Offset: 1
Examples
The triangle starts in row n=1 as: 1; 4, 2; 18, 18, 6; 6, 9, 6, 6; 150, 75, 75, 150, 30; 30, 75, 25, 75, 30, 30; 1470, 735, 1225, 1225, 735, 1470, 210;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Cf. A034386.
Programs
-
Magma
A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1, n)) >; [A034386(n)^2/(A034386(k)*A034386(n-k)): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 22 2023
-
Mathematica
f[n_]:= If[PrimeQ[n], n, 1]; cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A034386 *) T[n_, k_]:= T[n, k]= cf[n]^2/(cf[k]*cf[n-k]); Table[T[n,k], {n, 12}, {k,n}]//Flatten
-
SageMath
def A034386(n): return sloane.A002110(prime_pi(n)) def T(n,k): return A034386(n)^2/(A034386(k)*A034386(n-k)) flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 22 2023
Extensions
Offset corrected by the Assoc. Eds. of the OEIS, Jun 27 2010