A117715 Triangle, read by rows, T(n, k) = Fibonacci(n, k), where Fibonacci(n, x) is the Fibonacci polynomial.
0, 1, 1, 0, 1, 2, 1, 2, 5, 10, 0, 3, 12, 33, 72, 1, 5, 29, 109, 305, 701, 0, 8, 70, 360, 1292, 3640, 8658, 1, 13, 169, 1189, 5473, 18901, 53353, 129949, 0, 21, 408, 3927, 23184, 98145, 328776, 927843, 2298912, 1, 34, 985, 12970, 98209, 509626, 2026009, 6624850, 18674305, 46866034
Offset: 0
Examples
Triangle begins as: 0; 1, 1; 0, 1, 2; 1, 2, 5, 10; 0, 3, 12, 33, 72; 1, 5, 29, 109, 305, 701; 0, 8, 70, 360, 1292, 3640, 8658; 1, 13, 169, 1189, 5473, 18901, 53353, 129949;
References
- Steven Wolfram, The Mathematica Book, Cambridge University Press, 3rd ed. 1996, page 728
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial.
- Wikipedia, Fibonacci Polynomial
Crossrefs
Programs
-
Magma
A117715:= func< n, k | k eq 0 select (n mod 2) else Evaluate(DicksonSecond(n-1, -1), k) >; [A117715(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Oct 01 2024
-
Maple
with(combinat):for n from 0 to 9 do seq(fibonacci(n,m), m = 0 .. n) od; # Zerinvary Lajos, Apr 09 2008
-
Mathematica
Table[Fibonacci[n, k], {n,0,12}, {k,0,n}]//Flatten
-
Python
from sympy import fibonacci def T(n, m): return 0 if n==0 else fibonacci(n, m) for n in range(21): print([T(n, m) for m in range(n + 1)]) # Indranil Ghosh, Aug 12 2017
-
SageMath
def A117715(n,k): return lucas_number1(n, k, -1) flatten([[A117715(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 01 2024
Formula
Extensions
Definition simplified by the Assoc. Editors of the OEIS, Nov 17 2009