cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117762 a(1) = 6; for n>1, a(n) = prime(n)*(prime(n)^2 - 1)/2.

Original entry on oeis.org

6, 12, 60, 168, 660, 1092, 2448, 3420, 6072, 12180, 14880, 25308, 34440, 39732, 51888, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 285852, 352440, 456288, 515100, 546312, 612468, 647460, 721392, 1024128, 1123980, 1285608, 1342740, 1653900
Offset: 1

Views

Author

Roger L. Bagula, Apr 14 2006

Keywords

Comments

a(n) is the order of the matrix group PSL(2,prime(n)). - corrected by Tom Edgar, Sep 28 2015

References

  • Blyth and Robertson, Essential Student Algebra, Volume 5: Groups,Chapman and Hall, New York, page 14

Crossrefs

Programs

  • Magma
    [6] cat [NthPrime(n)*(NthPrime(n)^2-1)/2: n in [2..40]]; // Vincenzo Librandi, Sep 29 2015
    
  • Mathematica
    a[n_]= If[n==1, 6, Prime[n]*(Prime[n]^2 -1)/2];
    Table[a[n], {n,40}]
    Join[{6}, Table[Prime[n] (Prime[n]^2 - 1)/2, {n, 2, 40}]] (* Vincenzo Librandi, Sep 29 2015 *)
  • PARI
    a(n) = prime(n)*(prime(n)^2-1)/2;
    vector(40, n, a(n+1)) \\ Altug Alkan, Sep 28 2015
    
  • SageMath
    def A117762(n): return nth_prime(n)*(nth_prime(n)^2-1)/2 + 3*int(n==1)
    [A117762(n) for n in range(1,41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = A127918(n), n>1.
a(n) = A000040(n)*A084921(n). - R. J. Mathar, Jan 29 2024