A117818 a(n) = n if n is 1 or a prime, otherwise a(n) = n divided by the least prime factor of n (A032742(n)).
1, 2, 3, 2, 5, 3, 7, 4, 3, 5, 11, 6, 13, 7, 5, 8, 17, 9, 19, 10, 7, 11, 23, 12, 5, 13, 9, 14, 29, 15, 31, 16, 11, 17, 7, 18, 37, 19, 13, 20, 41, 21, 43, 22, 15, 23, 47, 24, 7, 25, 17, 26, 53, 27, 11, 28, 19, 29, 59, 30, 61, 31, 21, 32, 13, 33, 67, 34, 23, 35, 71, 36, 73, 37, 25, 38
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a117818 n = if a010051 n == 1 then n else a032742 n -- Reinhard Zumkeller, Jun 24 2013
-
Maple
A117818 := proc(n) local a,d; if isprime(n) or n =1 then return n; end if; a := -1 ; for d in numtheory[divisors](n) do if d < n and d> a then a := d ; end if; end do: a ; end proc: seq(A117818(n),n=1..100) ; # R. J. Mathar, Apr 30 2024
-
Mathematica
Table[If[PrimeQ[n], n, If[n == 1, 1, n/FactorInteger[n][[1, 1]]]], {n, 1, 76}] Table[Which[n==1,1,PrimeQ[n],1,True,Divisors[n][[-2]]],{n,80}] (* Harvey P. Dale, Feb 02 2022 *)
-
Python
import sympy def A117818(n): if n == 1: return 1 else: =sympy.ntheory.factor.primefactors(n) return _[-1] print([A117818(n) for n in range(1,100)]) # R. J. Mathar, May 24 2024
Extensions
Edited by Stefan Steinerberger, Jul 22 2007
Extended by Charles R Greathouse IV, Jul 28 2010
Comments