cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A126768 Equal-parity block sizes in sequence A117872.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 2, 1, 1, 3, 3, 2, 2, 1, 1, 3, 2, 3, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 3, 3, 1, 1, 1, 1, 4, 1, 2, 1, 4, 2, 3, 1, 2, 2, 1, 1, 1, 3, 3, 1, 3, 2, 1, 2, 4, 2, 2, 4, 2, 4, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 1, 1, 2, 3, 2, 1, 4, 3, 1, 3, 1, 5, 6, 3, 1, 4, 5, 5, 1, 5, 3, 1, 1, 6, 1, 1, 4, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 7, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 3, 1, 1, 1, 1
Offset: 1

Views

Author

Greg Huber, Feb 16 2007

Keywords

Comments

From a suggestion due to D. R. Hofstadter.

Programs

  • Haskell
    import Data.List (group)
    a126768 n = a126768_list !! n
    a126768_list = map length $ group a117872_list
    -- Reinhard Zumkeller, Aug 15 2013

Extensions

Corrected terms from Greg Huber, Aug 21 2013

A007501 a(0) = 2; for n >= 0, a(n+1) = a(n)*(a(n)+1)/2.

Original entry on oeis.org

2, 3, 6, 21, 231, 26796, 359026206, 64449908476890321, 2076895351339769460477611370186681, 2156747150208372213435450937462082366919951682912789656986079991221
Offset: 0

Views

Author

Keywords

Comments

Number of nonisomorphic complete binary trees with leaves colored using two colors. - Brendan McKay, Feb 01 2001
With a(0) = 2, a(n+1) is the number of possible distinct sums between any number of elements in {1,...,a(n)}. - Derek Orr, Dec 13 2014

Examples

			Example for depth 2 (the nonisomorphic possibilities are AAAA, AAAB, AABB, ABAB, ABBB, BBBB):
         o
        / \
       /   \
      o     o
     / \   / \
    /   \ /   \
    A   B B   B
		

References

  • W. H. Cutler, Subdividing a Box into Completely Incongruent Boxes, J. Rec. Math., 12 (1979), 104-111.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A117872 (parity), A275342 (2-adic valuation).
Cf. A129440.
Cf. A013589 (start=4), A050542 (start=5), A050548 (start=7), A050536 (start=8), A050909 (start=9).

Programs

  • Haskell
    a007501 n = a007501_list !! n
    a007501_list = iterate a000217 2  -- Reinhard Zumkeller, Aug 15 2013
  • Mathematica
    f[n_Integer] := n(n + 1)/2; NestList[f, 2, 10]
  • PARI
    a(n)=if(n<1,2,a(n-1)*(1+a(n-1))/2)
    

Formula

a(n) = A006893(n+1) + 1.
a(n+1) = A000217(a(n)). - Reinhard Zumkeller, Aug 15 2013
a(n) ~ 2 * c^(2^n), where c = 1.34576817070125852633753712522207761954658547520962441996... . - Vaclav Kotesovec, Dec 17 2014
a(n) = A145272(n) + a(n-1). - J.S. Seneschal, Jul 17 2025

A076436 Square board sizes for which the lights-out problem has a unique solution (counting solutions differing only by rotation and reflection as distinct).

Original entry on oeis.org

1, 2, 3, 6, 7, 8, 10, 12, 13, 15, 18, 20, 21, 22, 25, 26, 27, 28, 31, 36, 37, 38, 40, 42, 43, 45, 46, 48, 51, 52, 55, 56, 57, 58, 60, 63, 66, 68, 70, 72, 73, 75, 76, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 93, 96, 97, 100, 102, 103, 105, 106, 108, 110, 111, 112, 115, 116, 117, 120
Offset: 1

Views

Author

Eric W. Weisstein, Oct 11 2002

Keywords

Comments

These are also the boards where any starting configuration can be turned off. - Robert Cowen (robert.cowen(AT)gmail.com), Jan 06 2007. [Comment corrected by Sune Kristian Jakobsen (sunejakobsen(AT)hotmail.com), Feb 04 2008]

Crossrefs

Cf. A075462, A076437, A117872. Complement of A117870.

Formula

Positive integer n is in this sequence iff A159257(n)=0. [Max Alekseyev, Sep 25 2009]

Extensions

More terms from N. J. A. Sloane (based on A117870), May 14 2006, and Thomas Buchholz, May 16 2014

A117870 Square board sizes for which the lights out problem does not have a unique solution (counting solutions differing only by rotation and reflection as distinct).

Original entry on oeis.org

4, 5, 9, 11, 14, 16, 17, 19, 23, 24, 29, 30, 32, 33, 34, 35, 39, 41, 44, 47, 49, 50, 53, 54, 59, 61, 62, 64, 65, 67, 69, 71, 74, 77, 79, 83, 84, 89, 92, 94, 95, 98, 99, 101, 104, 107, 109, 113, 114, 118, 119, 123, 124, 125, 126, 128, 129, 131, 134, 135, 137, 139, 143
Offset: 1

Views

Author

N. J. A. Sloane, May 14 2006

Keywords

Comments

Numbers k such that a k X k parity pattern exists (see A118141). - Don Knuth, May 11 2006

Crossrefs

Cf. A075462, A076437, A117872. Complement of A076436.

Formula

a(n) = A093614(n) - 1.
Contains positive integers k such that A159257(k) > 0. - Max Alekseyev, Sep 17 2009

Extensions

More terms from Max Alekseyev, Sep 17 2009, and Thomas Buchholz, May 16 2014

A275342 2-adic valuation of iterated triangular numbers, starting with 2.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 3, 2, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 1, 0, 3, 2, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 0, 4, 3, 2, 1, 0, 0, 4, 3, 2, 1, 0, 2, 1, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Jeffrey Shallit, Jul 23 2016

Keywords

Examples

			t(1) = 2, t(2) = 3, t(3) = 6, t(4) = 21, so a(1) = 1, a(2) = 0, a(3) = 1, a(4) = 0.
		

Crossrefs

Formula

Writing t(1) = 2, t(n+1) = t(n)(t(n)+1)/2, the sequence is nu_2 (t(n)), where nu_2 (x) is the exponent of the highest power of 2 dividing x.
a(n) = A007814(A007501(n)). - Michel Marcus, Jul 23 2016

A145273 Parity sequence of A006893.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Greg Huber, Oct 06 2008

Keywords

Comments

Complement of the parity sequence of iterated triangular numbers (A117872).

Crossrefs

Cf. A145272. Complement of A117872
Showing 1-6 of 6 results.