cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117592 a(n) = a(3n) = a(3n+1) = a(3n+2)/2 with a(0)=1.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 1, 1, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 4, 8, 1, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 1, 1, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 4, 8, 2, 2, 4, 2, 2, 4, 4, 4, 8, 2, 2, 4, 2, 2, 4, 4, 4
Offset: 0

Views

Author

Paul Barry, Apr 05 2006

Keywords

Comments

Row sums of number triangle A117944.
Product of the nonzero digits of (n written in base 3). - Ilya Gutkovskiy, Nov 15 2020
a(n) = 1, 2, 4, 8, 16, 32, 64 iff n is respectively in A005836, A023699, A023700, A023701, A023702, A023703, A023704. - Bernard Schott, Dec 04 2020

Crossrefs

See A338882 for similar sequences.
Cf. A081603 (log_2), A117942 (signed), A117944.

Programs

  • Mathematica
    Nest[ Join[#, #, 2#] &, {1}, 5] (* Robert G. Wilson v, Jul 27 2014 *)
  • PARI
    a(n) = 1 << hammingweight(digits(n,3)>>1); \\ Kevin Ryde, Nov 15 2020
    
  • Python
    from gmpy2 import digits
    def A117592(n): return 1<Chai Wah Wu, Dec 05 2024

Formula

a(n) = a(3n)/a(0) = a(3n+1)/a(1) = a(3n+2)/a(2).
a(n) = abs(A117942(n)).
G.f. A(x) satisfies: A(x) = (1 + x + 2*x^2) * A(x^3). - Ilya Gutkovskiy, Nov 15 2020
a(n) = 2^A081603(n). - Kevin Ryde, Nov 15 2020

Extensions

a(0) = 1 added to the Name by Bernard Schott, Dec 04 2020

A290094 Restricted growth sequence transform of A290093.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 3, 5, 6, 2, 7, 5, 4, 8, 9, 5, 10, 11, 3, 5, 12, 5, 9, 13, 6, 11, 14, 2, 7, 5, 7, 15, 10, 5, 10, 11, 4, 15, 9, 8, 16, 17, 9, 18, 19, 5, 10, 13, 10, 18, 20, 11, 21, 22, 3, 5, 12, 5, 9, 13, 12, 13, 23, 5, 10, 13, 9, 17, 24, 13, 20, 25, 6, 11, 23, 11, 19, 25, 14, 22, 26, 2, 7, 5, 7, 15, 10, 5, 10, 11, 7, 27, 10, 15, 28, 18, 10, 29, 21, 5, 10, 13
Offset: 0

Views

Author

Antti Karttunen, Jul 26 2017

Keywords

Crossrefs

For all i, j: a(i) = a(j) <=> A290093(n) = A290093(n), thus this matches to all the same base-3 (ternary) related sequences as A290093: A006047, A053735, A062756, A081603, A117942, A206424, A227428, A290091, A290092, A290079, and many others.

A117941 Inverse of number triangle A117939.

Original entry on oeis.org

1, -2, 1, -5, 2, 1, -2, 0, 0, 1, 4, -2, 0, -2, 1, 10, -4, -2, -5, 2, 1, -5, 0, 0, 2, 0, 0, 1, 10, -5, 0, -4, 2, 0, -2, 1, 25, -10, -5, -10, 4, 2, -5, 2, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, -2, 0, 0, 0, 0, 0, 0, 0, -2, 1, 10, -4, -2, 0, 0, 0, 0, 0, 0, -5, 2, 1, 4, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 1, -8, 4, 0, 4, -2, 0, 0, 0, 0, 4, -2, 0, -2, 1
Offset: 0

Views

Author

Paul Barry, Apr 05 2006

Keywords

Comments

Row sums are A117942.
T(n, k) mod 2 = A117944(n,k).

Examples

			Triangle begins
   1;
  -2,   1;
  -5,   2,  1;
  -2,   0,  0,   1;
   4,  -2,  0,  -2, 1;
  10,  -4, -2,  -5, 2, 1;
  -5,   0,  0,   2, 0, 0,  1;
  10,  -5,  0,  -4, 2, 0, -2, 1;
  25, -10, -5, -10, 4, 2, -5, 2, 1;
		

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= M[n, k]= If[k>n, 0, Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j,0,n}], 0];
    m:= m= With[{q = 60}, Table[M[n, k], {n,0,q}, {k,0,q}]];
    T[n_, k_]:= Inverse[m][[n+1, k+1]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
Showing 1-3 of 3 results.