cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117951 a(n) = n^2 + 5.

Original entry on oeis.org

5, 6, 9, 14, 21, 30, 41, 54, 69, 86, 105, 126, 149, 174, 201, 230, 261, 294, 329, 366, 405, 446, 489, 534, 581, 630, 681, 734, 789, 846, 905, 966, 1029, 1094, 1161, 1230, 1301, 1374, 1449, 1526, 1605, 1686, 1769, 1854, 1941, 2030, 2121, 2214, 2309, 2406, 2505
Offset: 0

Views

Author

Eric W. Weisstein, Apr 04 2006

Keywords

Crossrefs

Cf. A078402.

Programs

Formula

a(n) = 2*n + a(n-1) - 1 (with a(0)=5). - Vincenzo Librandi, Nov 13 2010
From Colin Barker, Apr 10 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (5-9*x+6*x^2)/(1-x)^3. (End)
From Amiram Eldar, Jul 13 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(5)*Pi*coth(sqrt(5)*Pi))/10.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(5)*Pi*cosech(sqrt(5)*Pi))/10. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = 2*sinh(2*Pi)/(sqrt(5)*sinh(sqrt(5)*Pi)).
Product_{n>=0} (1 + 1/a(n)) = sqrt(6/5)*sinh(sqrt(6)*Pi)/sinh(sqrt(5)*Pi). (End)
E.g.f.: exp(x)*(5 + x + x^2). - Elmo R. Oliveira, Jan 17 2025