A117989 Number of partitions of n such that the least part occurs at least twice.
0, 1, 1, 3, 3, 7, 8, 14, 18, 28, 35, 53, 67, 94, 121, 165, 209, 280, 353, 462, 582, 749, 935, 1192, 1480, 1862, 2302, 2871, 3526, 4366, 5335, 6555, 7976, 9737, 11789, 14317, 17259, 20845, 25032, 30093, 35992, 43087, 51347, 61216, 72710, 86362, 102235
Offset: 1
Keywords
Examples
a(5) = 3 because we have [3,1,1], [2,1,1,1] and [1,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Aritram Dhar, Proofs of Two Formulas of Vladeta Jovovic, arXiv:2112.07762 [math.CO], 2021.
Programs
-
Haskell
a117989 n = a117989_list !! (n-1) a117989_list = tail $ zipWith (-) (map (* 2) a000041_list) $ tail a000041_list -- Reinhard Zumkeller, Nov 12 2015
-
Maple
g:=sum(x^k*(1-x^(k-1))/product(1-x^j,j=1..k),k=2..70): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50); A117989 := proc(n) 2*combinat[numbpart](n)-combinat[numbpart](n+1) ; end proc: # R. J. Mathar, May 19 2016
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Count[#,Min[#]]>1&]], {n,50}] (* Harvey P. Dale, Apr 23 2011 *) max = 48; Sum[x^(2*k)/Product[1 - x^j, {j, k, Infinity}], {k, 1, Ceiling[ max/2]}] + O[x]^max // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Sep 11 2017 *)
Formula
G.f.: sum(k>=1, x^(2*k)/prod(j>=k, 1-x^j ) ).
G.f.: sum(k>=1, x^k*(1-x^(k-1))/prod(j=1..k, 1-x^j ) ).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 25*Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Nov 03 2020
Comments