cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117989 Number of partitions of n such that the least part occurs at least twice.

Original entry on oeis.org

0, 1, 1, 3, 3, 7, 8, 14, 18, 28, 35, 53, 67, 94, 121, 165, 209, 280, 353, 462, 582, 749, 935, 1192, 1480, 1862, 2302, 2871, 3526, 4366, 5335, 6555, 7976, 9737, 11789, 14317, 17259, 20845, 25032, 30093, 35992, 43087, 51347, 61216, 72710, 86362, 102235
Offset: 1

Views

Author

Emeric Deutsch, Apr 08 2006

Keywords

Comments

More generally, the g.f. for the number of partitions of n such that the least part occurs at least m times is sum(x^(mk)/product(1-x^j, j=k..infinity), k=1..infinity). Also, the number of partitions of n such that if k is the largest part, then k>=2 and k-1 does not occur. Example: a(5)=3 because we have [5],[4,1] and [3,1,1].
Also, the number of partitions of 2n such that the difference between greatest part and smallest part is n. - Vladeta Jovovic, May 09 2008

Examples

			a(5) = 3 because we have [3,1,1], [2,1,1,1] and [1,1,1,1,1].
		

Crossrefs

Programs

  • Haskell
    a117989 n = a117989_list !! (n-1)
    a117989_list = tail $ zipWith (-)
                          (map (* 2) a000041_list) $ tail a000041_list
    -- Reinhard Zumkeller, Nov 12 2015
  • Maple
    g:=sum(x^k*(1-x^(k-1))/product(1-x^j,j=1..k),k=2..70): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50);
    A117989 := proc(n)
        2*combinat[numbpart](n)-combinat[numbpart](n+1) ;
    end proc: # R. J. Mathar, May 19 2016
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[#,Min[#]]>1&]], {n,50}]  (* Harvey P. Dale, Apr 23 2011 *)
    max = 48; Sum[x^(2*k)/Product[1 - x^j, {j, k, Infinity}], {k, 1, Ceiling[ max/2]}] + O[x]^max // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Sep 11 2017 *)

Formula

G.f.: sum(k>=1, x^(2*k)/prod(j>=k, 1-x^j ) ).
G.f.: sum(k>=1, x^k*(1-x^(k-1))/prod(j=1..k, 1-x^j ) ).
a(n) = 2*A000041(n) - A000041(n+1). - Vladeta Jovovic, Jul 21 2006
a(n) = A056823(n+1) - 2*A056823(n). - Bob Selcoe, Apr 11 2014
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 25*Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Nov 03 2020