A118060 a(n) = 1681*n^2 - 984*n - 696.
1, 4060, 11481, 22264, 36409, 53916, 74785, 99016, 126609, 157564, 191881, 229560, 270601, 315004, 362769, 413896, 468385, 526236, 587449, 652024, 719961, 791260, 865921, 943944, 1025329, 1110076, 1198185, 1289656, 1384489, 1482684, 1584241
Offset: 1
Examples
a(3)=1681*3^2-984*3-696=11481, a(4)=1681*4^2-984*4-696=22264 and 11481+11482+...+17712=17713+...+22263
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[1681*n^2 - 984*n - 696: n in [1..40]]; // Vincenzo Librandi, Jul 09 2012
-
Mathematica
CoefficientList[Series[(1+4057*x-696*x^2)/(1-x)^3,{x,0,40}],x] (* Vincenzo Librandi, Jul 09 2012 *) LinearRecurrence[{3,-3,1},{1,4060,11481},40] (* Harvey P. Dale, Oct 28 2016 *)
-
PARI
a(n)=1681*n^2-984*n-696 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+4057*x-696*x^2)/(1-x)^3. - Colin Barker, Jul 01 2012
a(n)+(a(n)+1)+...+(a(n)+1681n+1188) = (a(n)+1681n+1189)+ ... +a(n+1)-1; a(n+1)-1 = a(n)+3362n+696.
a(n)+(a(n)+1)+...+(a(n)+1681n+1188)=41(41n-12)(41n+29)(82n+17)/2; e.g., 11481+11482+...+17712=90965388=41*111*152*263/2.
Extensions
Corrected by T. D. Noe, Nov 13 2006
Comments