cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118256 Concatenation for i=1 to n of A005171(i); also A118255 in base 2.

Original entry on oeis.org

1, 10, 100, 1001, 10010, 100101, 1001010, 10010101, 100101011, 1001010111, 10010101110, 100101011101, 1001010111010, 10010101110101, 100101011101011, 1001010111010111, 10010101110101110, 100101011101011101, 1001010111010111010, 10010101110101110101, 100101011101011101011
Offset: 1

Views

Author

Pierre CAMI, Apr 19 2006

Keywords

Examples

			A005171 : 1,0,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,1 ................
a(1)=1, a(2)=10, a(3)=100, a(4)=1001, ...
		

Crossrefs

Programs

  • Mathematica
    Array[FromDigits@ Array[Boole[! PrimeQ@ #] &, #] &, 21] (* or *)
    FromDigits@ IntegerDigits[#, 2] & /@ Last@ Transpose@ NestList[{#1 + 1, If[PrimeQ[#1 + 1], 2 #2, 2 #2 + 1]} & @@ # &, {1, 1}, 21] (* Michael De Vlieger, Nov 01 2016, latter after Harvey P. Dale at A118255 *)
  • PARI
    a(n) = sum(k=1, n, !isprime(k)*10^(n-k)); \\ Michel Marcus, Nov 01 2016
    
  • Python
    from sympy import isprime
    def a(n): return int("".join(str(1-isprime(i)) for i in range(1, n+1)))
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Jan 10 2022
    
  • Python
    # faster version for initial segment of sequence
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        an = 0
        for k in count(1):
            an = 10 * an + int(not isprime(k))
            yield an
    print(list(islice(agen(), 21))) # Michael S. Branicky, Jan 10 2022

Formula

a(n) ~ 10^n * 0.10010101.... [Charles R Greathouse IV, Dec 27 2011]

Extensions

Corrected by Omar E. Pol, Nov 08 2007