cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A139101 Numbers that show the distribution of prime numbers up to the n-th prime minus 1, using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

1, 10, 1001, 100101, 1001010111, 100101011101, 1001010111010111, 100101011101011101, 1001010111010111010111, 1001010111010111010111011111, 100101011101011101011101111101, 100101011101011101011101111101011111, 1001010111010111010111011111010111110111
Offset: 1

Views

Author

Omar E. Pol, Apr 08 2008

Keywords

Comments

a(n) has A000040(n)-1 digits, n-1 digits "0" and A000040(n)-n digits "1".

Crossrefs

Binary representation of A139102.
Subset of A118256.

Programs

  • Mathematica
    Table[ sum = 0; For[i = 1, i <= Prime[n] - 1 , i++, sum = sum*2;
    If[! PrimeQ[i], sum++]]; IntegerString[sum, 2], {n, 1, 13}] (* Robert Price, Apr 03 2019 *)
  • PARI
    a(n) = fromdigits(vector(prime(n)-1, k, !isprime(k)), 10); \\ Michel Marcus, Apr 04 2019
    
  • Python
    from sympy import isprime, prime
    def a(n): return int("".join(str(1-isprime(i)) for i in range(1, prime(n))))
    print([a(n) for n in range(1, 14)]) # Michael S. Branicky, Jan 10 2022
    
  • Python
    # faster version for initial segment of sequence
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        an = 0
        for k in count(1):
            an = 10 * an + int(not isprime(k))
            if isprime(k+1):
                yield an
    print(list(islice(agen(), 13))) # Michael S. Branicky, Jan 10 2022

A118255 a(1)=1, then a(n)=2*a(n-1) if n is prime, a(n)=2*a(n-1)+1 if n not prime.

Original entry on oeis.org

1, 2, 4, 9, 18, 37, 74, 149, 299, 599, 1198, 2397, 4794, 9589, 19179, 38359, 76718, 153437, 306874, 613749, 1227499, 2454999, 4909998, 9819997, 19639995, 39279991, 78559983, 157119967, 314239934, 628479869, 1256959738, 2513919477, 5027838955, 10055677911
Offset: 1

Views

Author

Pierre CAMI, Apr 19 2006

Keywords

Comments

In base 2 a(n) is the concatenation for i=1 to n of A005171(i).

Examples

			a(2) = 2*1 = 2 as 2 is prime;
a(3) = 2*2 = 4 as 3 is prime;
a(4) = 2*4+1 = 9 as 4 is composite;
a(5) = 2*9 = 18 as 5 is prime.
		

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember; if n=1 then RETURN(1); fi; if isprime(n) then 2*f(n-1) else 2*f(n-1)+1; fi; end; # N. J. A. Sloane
  • Mathematica
    nxt[{n_,a_}]:={n+1,If[PrimeQ[n+1],2a,2a+1]}; Transpose[NestList[nxt,{1,1},40]][[2]] (* Harvey P. Dale, Jan 22 2015 *)
    Array[FromDigits[#, 2] &@ Array[Boole[! PrimeQ@ #] &, #] &, 34] (* Michael De Vlieger, Nov 01 2016 *)
  • Python
    from sympy import isprime, prime
    def a(n): return int("".join(str(1-isprime(i)) for i in range(1, n+1)), 2)
    print([a(n) for n in range(1, 35)]) # Michael S. Branicky, Jan 10 2022
    
  • Python
    # faster version for initial segment of sequence
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        an = 0
        for k in count(1):
            an = 2 * an + int(not isprime(k))
            yield an
    print(list(islice(agen(), 34))) # Michael S. Branicky, Jan 10 2022

Formula

a(n) = floor(k * 2^n) where k = 0.585317... = 1 - A051006. [Charles R Greathouse IV, Dec 27 2011]
From Ridouane Oudra, Aug 26 2019: (Start)
a(n) = 2^n - 1 - (1/2)*(pi(n) + Sum_{i=1..n} 2^(n-i)*pi(i)), where pi = A000720
a(n) = A000225(n) - A072762(n). (End)

Extensions

Corrected by Omar E. Pol, Nov 08 2007
Corrections verified by N. J. A. Sloane, Nov 17 2007

A139103 Numbers that show the distribution of prime numbers up to the n-th prime using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

10, 100, 10010, 1001010, 10010101110, 1001010111010, 10010101110101110, 1001010111010111010, 10010101110101110101110, 10010101110101110101110111110, 1001010111010111010111011111010, 1001010111010111010111011111010111110, 10010101110101110101110111110101111101110
Offset: 1

Views

Author

Omar E. Pol, Apr 08 2008

Keywords

Comments

a(n) has A000040(n) digits, n digits "0" and A000040(n)-n digits "1".

Crossrefs

Binary representation of A139104.
Subset of A118256.

Programs

  • Mathematica
    Table[ sum = 0; For[i = 1, i <= Prime[n] , i++, sum = sum*2;
    If[! PrimeQ[i], sum++]]; IntegerString[sum, 2], {n, 1, 20}] (* Robert Price, Apr 03 2019 *)
  • PARI
    a(n) = fromdigits(vector(prime(n), k, !isprime(k)), 10); \\ Michel Marcus, Apr 04 2019

Extensions

a(12)-a(13) from Robert Price, Apr 03 2019

A139119 Primes whose binary representation shows the distribution of prime numbers using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

2, 37, 149, 599, 153437, 39279991, 628479869, 11056334789265976156021, 3263254052013454238294691704608897001027543, 7524551543123483484068003542235060639999919940760883731360687
Offset: 1

Views

Author

Omar E. Pol, Apr 11 2008

Keywords

Comments

Primes in A118255.
Primes whose binary representation is also the concatenation of the initial terms of A005171, the characteristic function of nonprimes. - Omar E. Pol, Oct 07 2013
a(11) is a 120-digit number 377859...798653. - Robert Price, Apr 03 2019

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Boole /@ Not /@ PrimeQ /@ Range@k, 2], {k, 1, 100}], PrimeQ] (* Federico Provvedi, Oct 07 2013 *)
  • PARI
    f(n) = fromdigits(vector(n, k, !isprime(k)), 2); \\ A118255
    lista(nn) = for (n=1, nn, if (isprime(p=f(n)), print1(p, ", "))); \\ Michel Marcus, Apr 04 2019

Extensions

a(8)-a(10) from Donovan Johnson, Oct 07 2013

A139120 Primes that show the distribution of prime numbers using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

10010101, 1001010111010111, 100101011101011101011101111101011111011101011101111101111101011111011101011111011101111101111111011101011101011101111111111111011101111101011111111101011111011111011101111101111, 100101011101011101011101111101011111011101011101111101111101011111011101011111011101111101111111011101011101011101111111111111011101111101011111111101011111011111011101111101111101011111111101011101011111111
Offset: 1

Views

Author

Omar E. Pol, Apr 11 2008

Keywords

Comments

Primes in A118256.
For n = 1..7, the number of digits in a(n) is 8, 16, 177, 207, 872, 1395, 2114 (no more through 10000). - Jon E. Schoenfield, Apr 13 2018

Crossrefs

Programs

Extensions

Extended by Charles R Greathouse IV, Jul 27 2009

A118257 Numbers k such that A118255(k) is prime.

Original entry on oeis.org

2, 6, 8, 10, 18, 26, 30, 74, 142, 203, 398, 651, 792, 1314, 3487, 5978, 6240, 7814, 8054, 8673, 21436, 23947, 52985, 91784, 157537, 164901
Offset: 1

Views

Author

Pierre CAMI, Apr 19 2006

Keywords

Comments

A118255(1314) is prime with 396 digits
A118255(23947) is a probable prime with 7209 digits. - Giovanni Resta, Apr 26 2006

Examples

			A118255(2) = 2 prime, A118255(6) = 149 prime, A118255(8) = 599 prime.
		

Crossrefs

Programs

Extensions

a(15)-a(22) from Giovanni Resta, Apr 26 2006
a(23)-a(26) from Michael S. Branicky, Dec 11 2024

A139122 Primes whose binary representation shows the distribution of prime numbers up to some prime minus 1, using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

2, 37, 599, 153437, 628479869
Offset: 1

Views

Author

Omar E. Pol, Apr 11 2008

Keywords

Comments

Primes in A139102.
a(6) > 10^14632 if it exists (no further primes in first 5000 terms of A139102). - Michael S. Branicky, Jan 25 2022

Crossrefs

Programs

  • Mathematica
    Select[Table[ sum = 0; For[i = 1, i <= Prime[n] - 1 , i++, sum = sum*2; If[! PrimeQ[i], sum++]]; sum, {n, 1, 1000}], PrimeQ[#] &] (* Robert Price, Apr 03 2019 *)
    Module[{nn=500,p,x},p=Table[If[PrimeQ[n],0,1],{n,nn}];x=SequencePosition[p,{1,0}][[All,1]];Join[{2},Select[Table[FromDigits[Take[p,k],2],{k,x}],PrimeQ]]] (* Harvey P. Dale, Jun 15 2022 *)
  • PARI
    f(n) = fromdigits(vector(prime(n)-1, k, !isprime(k)), 2); \\ A139102
    lista(nn) = for (n=1, nn, if (isprime(p=f(n)), print1(p, ", ")));
    
  • Python
    # uses agen() in A139102
    from sympy import isprime
    print(list(islice(filter(isprime, agen()), 5))) # Michael S. Branicky, Jan 25 2022

Extensions

a(5) from Robert Price, Apr 03 2019
Showing 1-7 of 7 results.