cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A118256 Concatenation for i=1 to n of A005171(i); also A118255 in base 2.

Original entry on oeis.org

1, 10, 100, 1001, 10010, 100101, 1001010, 10010101, 100101011, 1001010111, 10010101110, 100101011101, 1001010111010, 10010101110101, 100101011101011, 1001010111010111, 10010101110101110, 100101011101011101, 1001010111010111010, 10010101110101110101, 100101011101011101011
Offset: 1

Views

Author

Pierre CAMI, Apr 19 2006

Keywords

Examples

			A005171 : 1,0,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,0,1,1,1,0,1,1 ................
a(1)=1, a(2)=10, a(3)=100, a(4)=1001, ...
		

Crossrefs

Programs

  • Mathematica
    Array[FromDigits@ Array[Boole[! PrimeQ@ #] &, #] &, 21] (* or *)
    FromDigits@ IntegerDigits[#, 2] & /@ Last@ Transpose@ NestList[{#1 + 1, If[PrimeQ[#1 + 1], 2 #2, 2 #2 + 1]} & @@ # &, {1, 1}, 21] (* Michael De Vlieger, Nov 01 2016, latter after Harvey P. Dale at A118255 *)
  • PARI
    a(n) = sum(k=1, n, !isprime(k)*10^(n-k)); \\ Michel Marcus, Nov 01 2016
    
  • Python
    from sympy import isprime
    def a(n): return int("".join(str(1-isprime(i)) for i in range(1, n+1)))
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Jan 10 2022
    
  • Python
    # faster version for initial segment of sequence
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        an = 0
        for k in count(1):
            an = 10 * an + int(not isprime(k))
            yield an
    print(list(islice(agen(), 21))) # Michael S. Branicky, Jan 10 2022

Formula

a(n) ~ 10^n * 0.10010101.... [Charles R Greathouse IV, Dec 27 2011]

Extensions

Corrected by Omar E. Pol, Nov 08 2007

A118257 Numbers k such that A118255(k) is prime.

Original entry on oeis.org

2, 6, 8, 10, 18, 26, 30, 74, 142, 203, 398, 651, 792, 1314, 3487, 5978, 6240, 7814, 8054, 8673, 21436, 23947, 52985, 91784, 157537, 164901
Offset: 1

Views

Author

Pierre CAMI, Apr 19 2006

Keywords

Comments

A118255(1314) is prime with 396 digits
A118255(23947) is a probable prime with 7209 digits. - Giovanni Resta, Apr 26 2006

Examples

			A118255(2) = 2 prime, A118255(6) = 149 prime, A118255(8) = 599 prime.
		

Crossrefs

Programs

Extensions

a(15)-a(22) from Giovanni Resta, Apr 26 2006
a(23)-a(26) from Michael S. Branicky, Dec 11 2024

A139102 Numbers whose binary representation shows the distribution of prime numbers up to the n-th prime minus 1, using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

1, 2, 9, 37, 599, 2397, 38359, 153437, 2454999, 157119967, 628479869, 40222711647, 643563386359, 2574253545437, 41188056726999, 2636035630527967, 168706280353789919, 674825121415159677, 43188807770570219359, 691020924329123509751, 2764083697316494039005
Offset: 1

Views

Author

Omar E. Pol, Apr 08 2008

Keywords

Comments

a(n) is the decimal representation of A139101(n) interpreted as binary number.

Examples

			a(4)=37 because 37 written in base 2 is 100101 and the string "100101" shows the distribution of prime numbers up to the 4th prime minus 1, using "0" for primes and "1" for nonprime numbers.
		

Crossrefs

Programs

  • Maple
    A139101 := proc(n) option remember ; local a,p; if n = 1 then RETURN(1); else a := 10*A139101(n-1) ; for p from ithprime(n-1)+1 to ithprime(n)-1 do a := 10*a+1 ; od: fi ; RETURN(a) ; end: # R. J. Mathar, Apr 25 2008
    bin2dec := proc(n) local nshft ; nshft := convert(n,base,10) ; add(op(i,nshft)*2^(i-1),i=1..nops(nshft) ) ; end: # R. J. Mathar, Apr 25 2008
    A139102 := proc(n) bin2dec(A139101(n)) ; end: # R. J. Mathar, Apr 25 2008
    seq(A139102(n),n=1..35) ; # R. J. Mathar, Apr 25 2008
  • Mathematica
    Table[ sum = 0; For[i = 1, i <= Prime[n] - 1 , i++, sum = sum*2;
    If[! PrimeQ[i], sum++]]; sum, {n, 1, 25}] (* Robert Price, Apr 03 2019 *)
  • PARI
    a(n) = fromdigits(vector(prime(n)-1, k, !isprime(k)), 2); \\ Michel Marcus, Apr 04 2019
    
  • Python
    from sympy import isprime, prime
    def a(n):
        return int("".join(str(1-isprime(i)) for i in range(1, prime(n))), 2)
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Jan 10 2022
    
  • Python
    # faster version for initial segment of sequence
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        an = 0
        for k in count(1):
            an = 2 * an + int(not isprime(k))
            if isprime(k+1):
                yield an
    print(list(islice(agen(), 21))) # Michael S. Branicky, Jan 10 2022

Formula

a(n) = A139104(n)/2.

Extensions

More terms from R. J. Mathar, Apr 25 2008
a(20)-a(21) from Robert Price, Apr 03 2019

A139104 Numbers whose binary representation shows the distribution of prime numbers up to the n-th prime, using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

2, 4, 18, 74, 1198, 4794, 76718, 306874, 4909998, 314239934, 1256959738, 80445423294, 1287126772718, 5148507090874, 82376113453998, 5272071261055934, 337412560707579838, 1349650242830319354, 86377615541140438718, 1382041848658247019502, 5528167394632988078010
Offset: 1

Views

Author

Omar E. Pol, Apr 08 2008

Keywords

Comments

a(n) is the decimal representation of A139103(n) interpreted as binary number.

Examples

			a(4)=74 because 74 written in base 2 is 1001010 and the string "1001010" shows the distribution of prime numbers up to the 4th prime, using "0" for primes and "1" for nonprime numbers.
		

Crossrefs

Programs

  • Mathematica
    Table[ sum = 0; For[i = 1, i <= Prime[n] , i++, sum = sum*2;
    If[! PrimeQ[i], sum++]]; sum, {n, 1, 21}] (* Robert Price, Apr 03 2019 *)
    Module[{nn=30,t},t=Table[If[PrimeQ[n],0,1],{n,Prime[nn]}];Table[ FromDigits[ Take[t,p],2],{p,Prime[Range[nn]]}]] (* Harvey P. Dale, Jul 15 2019 *)
  • PARI
    a(n) = fromdigits(vector(prime(n), k, !isprime(k)), 2); \\ Michel Marcus, Apr 04 2019

Formula

a(n) = 2 * A139102(n).
From Ridouane Oudra, Aug 27 2019: (Start)
a(n) = 2^prime(n) - 1 - (1/2)*(n + Sum_{i=1..prime(n)} 2^(prime(n)-i)*pi(i)), where prime(n) = A000040(n) and pi(n) = A000720(n)
a(n) = A001348(n) - A121240(n)
a(n) = A118255(A000040(n)). (End)

Extensions

More terms from R. J. Mathar, May 22 2008
a(19)-a(21) from Robert Price, Apr 03 2019

A072762 n coded as binary word of length=n with k-th bit set iff k is prime (1<=k<=n), decimal value.

Original entry on oeis.org

0, 1, 3, 6, 13, 26, 53, 106, 212, 424, 849, 1698, 3397, 6794, 13588, 27176, 54353, 108706, 217413, 434826, 869652, 1739304, 3478609, 6957218, 13914436, 27828872, 55657744, 111315488, 222630977, 445261954, 890523909, 1781047818, 3562095636, 7124191272
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 08 2002

Keywords

Comments

a(n) is odd iff n is prime.
a(p) where p is prime is the numerator of Sum_{q <= p} 1/2^q where the sum is over primes up to p. - Alexander Adamchuk, Aug 22 2006
The n-th approximation to the Prime Constant is given by a(n)/2^n. - Anton Vrba (antonvrba(AT)yahoo.com), Nov 24 2006

Examples

			a(6) = '011010' = (((0*2+1)*2+1)*2*2+1)*2 = 26.
a(7) = '0110101' = (((0*2+1)*2+1)*2*2+1)*2*2+1 = 53.
a(8) = '01101010' = ((((0*2+1)*2+1)*2*2+1)*2*2+1)*2 = 106.
		

Crossrefs

Programs

  • Haskell
    a072762 n = foldl (\v d -> 2*v + d) 0 $ map a010051 [1..n]
    -- Reinhard Zumkeller, Sep 17 2011
  • Maple
    a:= proc(n) option remember;
          `if`(n<2, 0, 2 * a(n-1) + `if`(isprime(n), 1, 0))
        end:
    seq(a(n), n=1..40);  #  Alois P. Heinz, Jan 18 2011
  • Mathematica
    a[1] = 0; a[n_] := a[n] = 2*a[n-1] + Boole[PrimeQ[n]]; Table[a[n], {n, 1, 31}] (* Jean-François Alcover, Jun 14 2013 *)
    nxt[{n_,a_}]:={n+1,Boole[PrimeQ[n+1]]+2a}; Transpose[NestList[nxt,{1,0},30]][[2]] (* Harvey P. Dale, Jan 07 2015 *)
  • PARI
    an=0; print1(an,", "); for(n=2,31, an=2*an+isprime(n); print1(an,", ")) \\ Washington Bomfim, Jan 18 2011
    
  • PARI
    a(n)=my(s=1,p=2);forprime(q=3,n,s=s<<(q-p)+1;p=q);s<<(n-p) \\ Charles R Greathouse IV, Jun 03 2013
    

Formula

a(1) = 0 and a(n) = a(n-1)*2 + A010051(n) for n>1.
a(n) = (1/2)*(pi(n) + Sum_{i=1..n} 2^(n-i)*pi(i)), where pi = A000720. - Ridouane Oudra, Aug 26 2019
a(n) = floor(c*2^n), where c = A051006 is the prime constant. - Lorenzo Sauras Altuzarra, Jan 03 2023

A139119 Primes whose binary representation shows the distribution of prime numbers using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

2, 37, 149, 599, 153437, 39279991, 628479869, 11056334789265976156021, 3263254052013454238294691704608897001027543, 7524551543123483484068003542235060639999919940760883731360687
Offset: 1

Views

Author

Omar E. Pol, Apr 11 2008

Keywords

Comments

Primes in A118255.
Primes whose binary representation is also the concatenation of the initial terms of A005171, the characteristic function of nonprimes. - Omar E. Pol, Oct 07 2013
a(11) is a 120-digit number 377859...798653. - Robert Price, Apr 03 2019

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Boole /@ Not /@ PrimeQ /@ Range@k, 2], {k, 1, 100}], PrimeQ] (* Federico Provvedi, Oct 07 2013 *)
  • PARI
    f(n) = fromdigits(vector(n, k, !isprime(k)), 2); \\ A118255
    lista(nn) = for (n=1, nn, if (isprime(p=f(n)), print1(p, ", "))); \\ Michel Marcus, Apr 04 2019

Extensions

a(8)-a(10) from Donovan Johnson, Oct 07 2013

A139120 Primes that show the distribution of prime numbers using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

10010101, 1001010111010111, 100101011101011101011101111101011111011101011101111101111101011111011101011111011101111101111111011101011101011101111111111111011101111101011111111101011111011111011101111101111, 100101011101011101011101111101011111011101011101111101111101011111011101011111011101111101111111011101011101011101111111111111011101111101011111111101011111011111011101111101111101011111111101011101011111111
Offset: 1

Views

Author

Omar E. Pol, Apr 11 2008

Keywords

Comments

Primes in A118256.
For n = 1..7, the number of digits in a(n) is 8, 16, 177, 207, 872, 1395, 2114 (no more through 10000). - Jon E. Schoenfield, Apr 13 2018

Crossrefs

Programs

Extensions

Extended by Charles R Greathouse IV, Jul 27 2009

A139122 Primes whose binary representation shows the distribution of prime numbers up to some prime minus 1, using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

2, 37, 599, 153437, 628479869
Offset: 1

Views

Author

Omar E. Pol, Apr 11 2008

Keywords

Comments

Primes in A139102.
a(6) > 10^14632 if it exists (no further primes in first 5000 terms of A139102). - Michael S. Branicky, Jan 25 2022

Crossrefs

Programs

  • Mathematica
    Select[Table[ sum = 0; For[i = 1, i <= Prime[n] - 1 , i++, sum = sum*2; If[! PrimeQ[i], sum++]]; sum, {n, 1, 1000}], PrimeQ[#] &] (* Robert Price, Apr 03 2019 *)
    Module[{nn=500,p,x},p=Table[If[PrimeQ[n],0,1],{n,nn}];x=SequencePosition[p,{1,0}][[All,1]];Join[{2},Select[Table[FromDigits[Take[p,k],2],{k,x}],PrimeQ]]] (* Harvey P. Dale, Jun 15 2022 *)
  • PARI
    f(n) = fromdigits(vector(prime(n)-1, k, !isprime(k)), 2); \\ A139102
    lista(nn) = for (n=1, nn, if (isprime(p=f(n)), print1(p, ", ")));
    
  • Python
    # uses agen() in A139102
    from sympy import isprime
    print(list(islice(filter(isprime, agen()), 5))) # Michael S. Branicky, Jan 25 2022

Extensions

a(5) from Robert Price, Apr 03 2019
Showing 1-8 of 8 results.