cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118259 Numbers of strongly carefree couples (a,b) with a,b <= n.

Original entry on oeis.org

1, 3, 7, 7, 13, 17, 27, 27, 27, 33, 47, 47, 63, 73, 85, 85, 107, 107, 131, 131, 147, 165, 195, 195, 195, 215, 215, 215, 249, 265, 303, 303, 329, 355, 385, 385, 431, 461, 495, 495, 547, 569, 625, 625, 625, 661, 721, 721, 721, 721, 763, 763, 827, 827, 877, 877
Offset: 1

Views

Author

Eric W. Weisstein, Apr 20 2006

Keywords

Comments

(a, b) is a strongly carefree couple if gcd(a, b) = 1 and both a and b are squarefree (A005117). - Amiram Eldar, Mar 03 2021

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.5.1 Carefree Couples, p. 110.

Crossrefs

Programs

  • Mathematica
    Table[nn = n;Length[Select[Level[Table[Table[{i, j}, {i, 1, nn}], {j, 1, nn}], {2}],Apply[GCD, #] == 1 && SquareFreeQ[#[[1]]] &&SquareFreeQ[#[[2]]] &]], {n, 1, 56}] (* Geoffrey Critzer, Jan 13 2015 *)
  • PARI
    a(n)=sum(i=1,n,sum(j=1,n,moebius(i*j)^2)) \\ Benoit Cloitre, Oct 10 2009

Formula

a(n) = Sum_{i,j=1...n} mu(i*j)^2. - Benoit Cloitre, Oct 10 2009
From Amiram Eldar, Mar 03 2021: (Start)
a(n) = 2*A118258(n) - A118260(n).
a(n) ~ A065473 * n^2 + O(n*log(n)). (End)

A118258 Numbers of carefree couples (a,b) with a,b<=n.

Original entry on oeis.org

1, 3, 7, 9, 16, 20, 31, 35, 39, 46, 63, 67, 87, 98, 112, 119, 146, 152, 182, 189, 209, 228, 265, 273, 286, 308, 321, 330, 375, 391, 440, 453, 486, 515, 554, 565, 624, 657, 698, 712, 778, 801, 871, 888, 906, 946, 1022, 1037, 1063, 1080, 1133, 1152, 1236, 1252
Offset: 1

Views

Author

Eric W. Weisstein, Apr 20 2006

Keywords

Comments

(a, b) is a carefree couple if gcd(a, b) = 1 and a is squarefree (A005117). - Amiram Eldar, Mar 03 2021

Examples

			a(4) = 9 because there are 9 ordered pairs (i,j) of positive integers such that 1<=i,j<=4, gcd(i,j)=1 and i is squarefree: (1,1), (2,1), (3,1), (1,2), (3,2), (1,3), (2,3), (1,4), (3,4). - _Geoffrey Critzer_, Jan 12 2015
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.5.1 Carefree Couples, p. 110.

Crossrefs

Programs

  • Maple
    F:= proc(n) local A,a;
      A:= select(numtheory:-issqrfree, [$1..n]);
      add(nops(select(y->igcd(a,y)=1, [$1..n])),a=A);
    end proc:
    seq(F(n),n=1..100); # Robert Israel, Jan 12 2015
  • Mathematica
    Table[nn = n;Select[Level[Table[Table[{i, j}, {i, 1, nn}], {j, 1, nn}], {2}], Apply[GCD, #] == 1 && SquareFreeQ[#[[1]]] &] // Length, {n, 1, 54}] (* Geoffrey Critzer, Jan 12 2015 *)
  • PARI
    a(n)=my(s); forsquarefree(m=1,n, s+=sumdiv(m, d, n\d*moebius(d))); s \\ Charles R Greathouse IV, Jan 25 2018

Formula

From Amiram Eldar, Mar 03 2021: (Start)
a(n) = (A118259(n) + A118260(n))/2.
a(n) ~ A065464 * n^2 + O(n*log(n)). (End)

A118261 Decimal expansion of probability of a weakly carefree couple.

Original entry on oeis.org

5, 6, 9, 7, 5, 1, 5, 8, 2, 9, 1, 9, 7, 1, 0, 1, 4, 6, 3, 2, 9, 6, 3, 8, 7, 0, 2, 3, 7, 3, 8, 0, 8, 6, 4, 5, 8, 0, 8, 2, 6, 5, 1, 8, 2, 6, 1, 4, 8, 1, 5, 2, 9, 2, 4, 2, 2, 3, 2, 4, 8, 9, 9, 7, 2, 7, 5, 9, 3, 8, 6, 1, 1, 9, 0, 2, 2, 2, 8, 2, 9, 9, 6, 1, 7, 8, 4, 3, 4, 6, 4, 9, 5, 6, 1, 8, 9, 9, 6, 4
Offset: 0

Views

Author

Eric W. Weisstein, Apr 20 2006

Keywords

Examples

			0.5697515829197101463296387...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, 2.5.1 Carefree Couples, p. 110.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 100; terms = 2000; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms + 10]]; r[n_Integer] := LR[[n]];
    K1 = (6/Pi^2)*Exp[NSum[r[n]*(PrimeZetaP[n - 1]/(n - 1)), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"]];
    K2 = NSum[-(2 + (-2)^n)*PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2 digits, WorkingPrecision -> 3digits, Method -> "AlternatingSigns"]//Exp;
    RealDigits[2 K1 - K2, 10, digits][[1]] (* Jean-François Alcover, May 15 2016 *)
  • PARI
    2 * prodeulerrat(1 - (2*p-1)/p^3) - prodeulerrat(1 - (3*p-2)/(p^3)) \\ Amiram Eldar, Mar 03 2021

Formula

Equals 2*K1 - K2, where K1 = A065464 and K2 = A065473.
Showing 1-3 of 3 results.