cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A118258 Numbers of carefree couples (a,b) with a,b<=n.

Original entry on oeis.org

1, 3, 7, 9, 16, 20, 31, 35, 39, 46, 63, 67, 87, 98, 112, 119, 146, 152, 182, 189, 209, 228, 265, 273, 286, 308, 321, 330, 375, 391, 440, 453, 486, 515, 554, 565, 624, 657, 698, 712, 778, 801, 871, 888, 906, 946, 1022, 1037, 1063, 1080, 1133, 1152, 1236, 1252
Offset: 1

Views

Author

Eric W. Weisstein, Apr 20 2006

Keywords

Comments

(a, b) is a carefree couple if gcd(a, b) = 1 and a is squarefree (A005117). - Amiram Eldar, Mar 03 2021

Examples

			a(4) = 9 because there are 9 ordered pairs (i,j) of positive integers such that 1<=i,j<=4, gcd(i,j)=1 and i is squarefree: (1,1), (2,1), (3,1), (1,2), (3,2), (1,3), (2,3), (1,4), (3,4). - _Geoffrey Critzer_, Jan 12 2015
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.5.1 Carefree Couples, p. 110.

Crossrefs

Programs

  • Maple
    F:= proc(n) local A,a;
      A:= select(numtheory:-issqrfree, [$1..n]);
      add(nops(select(y->igcd(a,y)=1, [$1..n])),a=A);
    end proc:
    seq(F(n),n=1..100); # Robert Israel, Jan 12 2015
  • Mathematica
    Table[nn = n;Select[Level[Table[Table[{i, j}, {i, 1, nn}], {j, 1, nn}], {2}], Apply[GCD, #] == 1 && SquareFreeQ[#[[1]]] &] // Length, {n, 1, 54}] (* Geoffrey Critzer, Jan 12 2015 *)
  • PARI
    a(n)=my(s); forsquarefree(m=1,n, s+=sumdiv(m, d, n\d*moebius(d))); s \\ Charles R Greathouse IV, Jan 25 2018

Formula

From Amiram Eldar, Mar 03 2021: (Start)
a(n) = (A118259(n) + A118260(n))/2.
a(n) ~ A065464 * n^2 + O(n*log(n)). (End)

A118260 Number of weakly carefree couples (a,b) with a,b<=n.

Original entry on oeis.org

1, 3, 7, 11, 19, 23, 35, 43, 51, 59, 79, 87, 111, 123, 139, 153, 185, 197, 233, 247, 271, 291, 335, 351, 377, 401, 427, 445, 501, 517, 577, 603, 643, 675, 723, 745, 817, 853, 901, 929, 1009, 1033, 1117, 1151, 1187, 1231, 1323, 1353, 1405, 1439, 1503, 1541
Offset: 1

Views

Author

Eric W. Weisstein, Apr 20 2006

Keywords

Comments

(a, b) is a weakly carefree couple if gcd(a, b) = 1 and either a or b is squarefree (A005117). - Amiram Eldar, Mar 03 2021

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.5.1 Carefree Couples, p. 110.

Crossrefs

Formula

From Amiram Eldar, Mar 03 2021: (Start)
a(n) = 2*A118258(n) - A118259(n).
a(n) ~ A118261 * n^2 + O(n*log(n)). (End)

A070072 Number of distinct rectangles with integer sides <= n and squarefree area.

Original entry on oeis.org

1, 2, 4, 4, 7, 9, 14, 14, 14, 17, 24, 24, 32, 37, 43, 43, 54, 54, 66, 66, 74, 83, 98, 98, 98, 108, 108, 108, 125, 133, 152, 152, 165, 178, 193, 193, 216, 231, 248, 248, 274, 285, 313, 313, 313, 331, 361, 361, 361, 361, 382, 382, 414
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 21 2002

Keywords

Examples

			There are seven rectangles with sides <= 5 having a squarefree area: 1 X 1, 1 X 2, 1 X 3, 1 X 5, 2 X 3, 2 X 5 and 3 X 5, whereas 1 X 4, 2 X 2, 2 X 4, 3 X 3, 3 X 4, 4 X 4, 4 X 5 and 5 X 5 are not squarefree; therefore a(5) = 7.
		

Crossrefs

Programs

  • Haskell
    a070072 n = length [() | x <- [1..n], y <- [1..x], a008966 (x*y) == 1]
    -- Reinhard Zumkeller, May 26 2012
    
  • Magma
    [&+[&+[MoebiusMu(i*j)^2:j in [1..i]]:i in [1..n]]:n in [1..53]]; // Marius A. Burtea, Oct 17 2019

Formula

a(n) = Sum_{i=1..n} Sum_{j= 1..i} mu(i*j)^2, where mu is the Moebius function (A008683). - Ridouane Oudra, Oct 17 2019
a(n) = (A118259(n) + 1)/2. - Ridouane Oudra, May 06 2025
a(n) = c * n^2 / 2 + O(n*log(n)), where c = Product_{p prime} (1 - (3*p-2)/(p^3)) (A065473). - Amiram Eldar, May 12 2025

A118261 Decimal expansion of probability of a weakly carefree couple.

Original entry on oeis.org

5, 6, 9, 7, 5, 1, 5, 8, 2, 9, 1, 9, 7, 1, 0, 1, 4, 6, 3, 2, 9, 6, 3, 8, 7, 0, 2, 3, 7, 3, 8, 0, 8, 6, 4, 5, 8, 0, 8, 2, 6, 5, 1, 8, 2, 6, 1, 4, 8, 1, 5, 2, 9, 2, 4, 2, 2, 3, 2, 4, 8, 9, 9, 7, 2, 7, 5, 9, 3, 8, 6, 1, 1, 9, 0, 2, 2, 2, 8, 2, 9, 9, 6, 1, 7, 8, 4, 3, 4, 6, 4, 9, 5, 6, 1, 8, 9, 9, 6, 4
Offset: 0

Views

Author

Eric W. Weisstein, Apr 20 2006

Keywords

Examples

			0.5697515829197101463296387...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, 2.5.1 Carefree Couples, p. 110.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 100; terms = 2000; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms + 10]]; r[n_Integer] := LR[[n]];
    K1 = (6/Pi^2)*Exp[NSum[r[n]*(PrimeZetaP[n - 1]/(n - 1)), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"]];
    K2 = NSum[-(2 + (-2)^n)*PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2 digits, WorkingPrecision -> 3digits, Method -> "AlternatingSigns"]//Exp;
    RealDigits[2 K1 - K2, 10, digits][[1]] (* Jean-François Alcover, May 15 2016 *)
  • PARI
    2 * prodeulerrat(1 - (2*p-1)/p^3) - prodeulerrat(1 - (3*p-2)/(p^3)) \\ Amiram Eldar, Mar 03 2021

Formula

Equals 2*K1 - K2, where K1 = A065464 and K2 = A065473.

A169646 Number of squarefree numbers of form k*n, 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 0, 3, 2, 5, 0, 0, 3, 7, 0, 8, 5, 6, 0, 11, 0, 12, 0, 8, 9, 15, 0, 0, 10, 0, 0, 17, 8, 19, 0, 13, 13, 15, 0, 23, 15, 17, 0, 26, 11, 28, 0, 0, 18, 30, 0, 0, 0, 21, 0, 32, 0, 25, 0, 23, 23, 36, 0, 37, 25, 0, 0, 30, 18, 41, 0, 29, 22, 44, 0, 45, 30, 0, 0, 36, 22, 49, 0, 0, 32, 51, 0, 41, 34
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 05 2010

Keywords

Crossrefs

Programs

Formula

a(n) = A008966(n)*A073311(n).
a(A000040(n)) = A112929(n).
a(n) = Sum_{i=1..n} A008966(n*i). - Ridouane Oudra, Jul 24 2019
a(n) = (A118259(n) - A118259(n-1))/2, for n>1. - Ridouane Oudra, May 04 2025
Sum_{k=1..n} a(k) ~ c * n / 2, where c = Product_{p prime} (1 - (3*p-2)/(p^3)) (A065473). - Amiram Eldar, May 12 2025
Showing 1-5 of 5 results.