cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A269993 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r = (1,1/2,1/3,1/4,...)

Original entry on oeis.org

2, 3, 9, 74, 8098, 101114070, 10080916639334518, 234737156891222571756748160861129, 104728182461244680288139397973895577148266725366426255244889745185
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
Guide to related sequences:
r(k) x denominators
1 sqrt(1/2) A069139
1 sqrt(1/3) A144983
1 sqrt(2) - 1 A006487
1 sqrt(3) - 1 A118325
1 tau - 1 A117116
1 1/Pi A006524
1 Pi-3 A001466
1 1/e A006526
1 e - 2 A006525
1 log(2) A118324
1 Euler constant A110820
1 (1/2)^(1/3) A269573
.
1/k sqrt(1/2) A269993
1/k sqrt(1/3) A269994
1/k sqrt(2) - 1 A269995
1/k sqrt(3) - 1 A269996
1/k tau - 1 A269997
1/k 1/Pi A269998
1/k Pi-3 A269999
1/k 1/e A270001
1/k e - 2 A270002
1/k log(2) A270314
1/k Euler constant A270315
1/k (1/2)^(1/3) A270316
.
Using the 12 choices for x shown above (that is, sqrt(1/2) to (1/2)^(1/3)), the denominator sequence of the r-Egyptian fraction for x appears for each of the following sequences (r(k)):
r(k) = 1 (see above)
r(k) = 1/k (see above)
r(k) = 2^(1-k): A270347-A270358
r(k) = 1/Fibonacci(k+1): A270394-A270405
r(k) = 1/prime(k): A270476-A270487
r(k) = 1/k!: A270517-A270527 (A000027 for x = e - 2)
r(k) = 1/(2k-1): A270546-A270557
r(k) = 1/(k+1): A270580-A270591

Examples

			sqrt(1/2) = 1/2 + 1/(2*3) + 1/(3*9) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/k;
    x = sqrt(1/2);
    f(x, k) = if(k<1, x, f(x, k - 1) - r(k)/n(x, k));
    n(x, k) = ceil(r(k)/f(x, k - 1));
    for(k = 1, 10, print1(n(x, k),", ")) \\ Indranil Ghosh, Mar 27 2017, translated from Mathematica code

A224231 Egyptian fraction expansion of sqrt(3).

Original entry on oeis.org

1, 2, 5, 32, 1249, 5986000, 438522193400489, 3126430743599145840898147625516, 10008815260914521335142941393259537613217919681721512170785592
Offset: 0

Views

Author

N. J. A. Sloane, Apr 11 2013, following a suggestion from Anthony C Robin

Keywords

Examples

			sqrt(3) = 1 + 1/2 + 1/5 + 1/32 + 1/1249 + 1/5986000 + ...
		

Crossrefs

A118325 is the main entry for this sequence.

A144835 Denominators of an Egyptian fraction for 1/zeta(2) = 0.607927101854... (A059956).

Original entry on oeis.org

2, 10, 127, 18838, 522338493, 727608914652776081, 990935377560451600699026552443764271, 1223212384013602554473872691328685513734082755736750146553750539914774364
Offset: 1

Views

Author

Artur Jasinski, Sep 22 2008

Keywords

Examples

			1/zeta(2) = 0.607927101854... = 1/2 + 1/10 + 1/127 + 1/18838 + ...
		

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Zeta[2], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a
  • PARI
    x=1/zeta(2); while(x, t=1\x+1; print1(t", "); x -= 1/t) \\ Charles R Greathouse IV, Nov 08 2013

A144984 Denominators of an Egyptian fraction for 1/sqrt(5) (A020762).

Original entry on oeis.org

3, 9, 362, 148807, 432181530536, 615828580117398011389583, 385329014801969222669766835659574445455872858297
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[5], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A145003 Denominators of an Egyptian fraction for 1/sqrt(29) = 0.185695338... (A020786).

Original entry on oeis.org

6, 53, 6221, 891830563, 950677235679298964, 2245647960428048728674383451656707058, 11636905679093503238901947768600244923435901955366623291532461461126244496
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[29], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A144983 Denominators of greedy Egyptian fraction for 1/sqrt(3) (A020760).

Original entry on oeis.org

2, 13, 2341, 41001128, 3352885935529869, 17147396444547741051849884001699, 1847333322606272250132077006229901193256553492442739965269739579
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[3], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A142725 Denominators of an Egyptian fraction for 1/Sqrt[17] = 0.242535625...

Original entry on oeis.org

5, 24, 1151, 6727710, 97954001297811, 12083213443785578998604325741, 2111557350230332542969297514824119073134312726162508784857, 5126406954746155312559668571658555244727150562238830979161154018392336359308299948544053564102183773577991816755308
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[17], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A142726 Denominators of an Egyptian fraction for 1/Sqrt[20] = 0.2236067977...

Original entry on oeis.org

5, 43, 2850, 9380555, 131539825706327, 25568462906010064277774504354, 1702783284378767791750994476557209698496292570221862357616, 9282809298390896944529722953873240985108041182275536393531898614770319137100914187360035180181565645720539192811580
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[20], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A144985 Denominators of an Egyptian fraction for 1/Sqrt[6]=0.408248290463863...

Original entry on oeis.org

3, 14, 287, 484228, 624850913463, 832896370765715143490072, 7620764031777359266114991754446899201236457828088, 74466937067918173179787895367258766085493130434332689333832927329763999409894621431449951498850730
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[6], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A144986 Denominators of an Egyptian fraction for 1/Sqrt[7]=0.377964473...

Original entry on oeis.org

3, 23, 868, 1242123, 2776290405248, 11161696107523243223922840, 261638153821481209775970282548980739821715625184617, 189055393361766552088064316219614698328133697744770641431804048878604165927723712902309210241320415402
Offset: 1

Views

Author

Artur Jasinski, Oct 07 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[7], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
Showing 1-10 of 26 results. Next