cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118337 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 23)^2 = y^2.

Original entry on oeis.org

0, 12, 33, 69, 133, 252, 460, 832, 1525, 2737, 4905, 8944, 16008, 28644, 52185, 93357, 167005, 304212, 544180, 973432, 1773133, 3171769, 5673633, 10334632, 18486480, 33068412, 60234705, 107747157, 192736885, 351073644, 627996508, 1123352944, 2046207205
Offset: 1

Views

Author

Mohamed Bouhamida, May 14 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+23, y).
Corresponding values y of solutions (x, y) are in A156567.
For the generic case x^2 + (x + p)^2 = y^2 with p = m^2 - 2 a (prime) number in A028871, m>=5, the x values are given by the sequence defined by a(n) = 6*a(n-3) - a(n-6) + 2p with a(1)=0, a(2) = 2m + 2, a(3) = 3*m^2 - 10m + 8, a(4)=3p, a(5) = 3*m^2 + 10m + 8, a(6) = 20*m^2 - 58m + 42. Pairs (p, m) are (23, 5), (47, 7), (79, 9), (167, 13), (223, 15), (359, 19), (439, 21), (727, 27), (839, 29), ...
Limit_{n -> oo} a(n)/a(n-3) = 3 + 2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (27 + 10*sqrt(2))/23 for n mod 3 = {1, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (3 + 2*sqrt(2))/((27 + 10*sqrt(2))/23)^2 for n mod 3 = 0.
For the generic case x^2 + (x + p)^2=y^2 with p = m^2 - 2 a prime number in A028871, m>=5, Y values are given by the sequence defined by b(n) = 6*b(n-3) - b(n-6) with b(1) = p, b(2) = m^2 + 2m + 2, b(3) = 5m^2 - 14m + 10, b(4) = 5p, b(5) = 5m^2 + 14m + 10, b(6) = 29m^2 - 82m + 58. - Mohamed Bouhamida, Sep 09 2009
For the generic case x^2 + (x + p)^2 = y^2 with p = m^2 - 2 a prime number, m>=5, the first three consecutive solutions are: (0;p), (2m+2; m^2+2m+2), (3*m^2-10m+8; 5*m^2-14m+10) and the other solutions are defined by: (X(n); Y(n))= (3*X(n-3)+2*Y(n-3)+p; 4*X(n-3)+3*Y(n-3)+2p). - Mohamed Bouhamida, Aug 19 2019
X(n) = 6*X(n-3) - X(n-6) + 2*p, and Y(n) = 6*Y(n-3) - Y(n-6) (can be easily proved using X(n) = 3*X(n-3) + 2*Y(n-3) + p, and Y(n) = 4*X(n-3) + 3*Y(n-3) + 2*p). - Mohamed Bouhamida, Aug 20 2019

Crossrefs

Cf. A156567, A028871 (primes of form n^2 - 2), A156035 (decimal expansion of 3 + 2*sqrt(2)), A156571 (decimal expansion of (27 + 10*sqrt(2))/23).
Cf. A118675 (p=47), A118676 (p=79), A130608 (p=167), A130609 (p=223), A130610 (p=359), A130645 (p=439), A130646 (p=727), A130647 (p=839).

Programs

  • Magma
    I:=[0,12,33,69,133,252,460]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+23)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,12,33,69,133,252,460},50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    forstep(n=0, 1124000000, [1, 3], if(issquare(2*n*(n+23)+529), print1(n, ",")))
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(12+21*x+36*x^2-8*x^3-7*x^4-8*x^5)/((1-x)*(1-6*x^3+x^6)))) \\ G. C. Greubel, May 04 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 46 for n > 6; a(1)=0, a(2)=12, a(3)=33, a(4)=69, a(5)=133, a(6)=252.
G.f.: x*(12 + 21*x + 36*x^2 - 8*x^3 - 7*x^4 - 8*x^5)/((1-x)*(1 - 6*x^3 + x^6)).

Extensions

Edited by Klaus Brockhaus, Feb 10 2009