A118346 Central terms of pendular triangle A118345.
1, 1, 5, 30, 201, 1445, 10900, 85128, 682505, 5585115, 46461437, 391743850, 3340361700, 28755475180, 249572076200, 2181469638880, 19186562661273, 169677521094215, 1507881643936015, 13458730170115778, 120599648894147185
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); [1] cat Coefficients(R!( Reversion( x/((1+x)*(1+4*x+x^2)) ) )); // G. C. Greubel, Mar 17 2021 -
Mathematica
CoefficientList[1 +InverseSeries[Series[x/((1+x)*(1+4*x+x^2)), {x,0,30}]], x] (* G. C. Greubel, Mar 17 2021 *)
-
PARI
{a(n) = polcoeff(serreverse( x*(1-2*x+sqrt((1-2*x)*(1-6*x)+x*O(x^n)))/(2*(1-2*x)))/x, n)}
-
Sage
def A118346_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( ( x/((1+x)*(1+4*x+x^2)) ).reverse() ).list() a=A118346_list(31); [1]+a[1:] # G. C. Greubel, Mar 17 2021
Formula
G.f.: A=A(x) satisfies A = 1 - 2*x*A + 2*x*A^2 + x*A^3.
G.f.: A(x) = 1 + series_reversion( x/((1+x)*(1+4*x+x^2)) ).
G.f.: A(x) = (1/x)*series_reversion( x*(1-2*x + sqrt((1-2*x)*(1-6*x)))/(2*(1-2*x)) ).
For n>0: a(n) = (1/n)*Sum_{j=0..n} Sum_{i=0..n-1} ( binomial(n,j) * binomial(j,i) * binomial(n-j,2*j-n-i-1) * 5^(2*n-3*j+2*i+1) ). -Vladimir Kruchinin, Dec 26 2010
Comments