cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118351 Central terms of pendular triangle A118350.

Original entry on oeis.org

1, 1, 6, 42, 325, 2688, 23286, 208659, 1918314, 17994264, 171542460, 1657212768, 16188521454, 159634359415, 1586932321578, 15886925400954, 160026976985205, 1620715748715648, 16493797802077032, 168583560794745684
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    [1] cat Coefficients(R!( Reversion( x/((1+x)*(1+5*x+x^2)) ) )); // G. C. Greubel, Feb 18 2021
  • Mathematica
    T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 18 2021 *)
    Join[{1}, Rest@CoefficientList[InverseSeries[Series[ x/((1+x)*(1+5*x+x^2)), {x,0,30}]], x]] (* G. C. Greubel, Feb 18 2021 *)
  • PARI
    {a(n)=polcoeff((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)+x*O(x^n)))/2/(1-3*x))/x),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(1 + serreverse( x/((1+x)*(1+5*x+x^2 +x*O(x^n)))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • Sage
    def S_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (x/((1+x)*(1+5*x+x^2))).reverse() ).list()
    a=S_list(31); [1]+a[1:] # G. C. Greubel, Feb 18 2021
    

Formula

G.f. A=A(x) satisfies: A = 1 - 3*x*A + 3*x*A^2 + x*A^3.
G.f.: 1 + Series_Reversion( x/((1+x)*(1+5*x+x^2)) ).
G.f.: (1/x)*Series_Reversion( x*(1-3*x+sqrt((1-3*x)*(1-7*x)))/2/(1-3*x) ).
For n>0: a(n) = 1/n*sum(j=0..n, C(n,j) *sum(i=0..(n-1), C(j,i)*C(n-j,2*j-n-i-1) *6^(2*n-3*j+2*i+1))). - Vladimir Kruchinin, Dec 26 2010
a(n) ~ s^(3/2) / (3*sqrt(2*Pi*(1 + 3*s + 3*s^2)) * n^(3/2) * r^(n+1)), where s = 2*sin(Pi/6 + arctan(sqrt(7)/3)/3) - 1, r = 2*s/(9 - 12*sin(Pi/6 - 2*arctan(sqrt(7)/3)/3)). - Vaclav Kotesovec, Feb 18 2021