A118354 Convolution triangle, read by rows, where diagonals are successive self-convolutions of A118351.
1, 1, 0, 1, 1, 0, 1, 2, 6, 0, 1, 3, 13, 42, 0, 1, 4, 21, 96, 325, 0, 1, 5, 30, 163, 770, 2688, 0, 1, 6, 40, 244, 1353, 6530, 23286, 0, 1, 7, 51, 340, 2093, 11760, 57612, 208659, 0, 1, 8, 63, 452, 3010, 18636, 105681, 523446, 1918314, 0, 1, 9, 76, 581, 4125, 27441, 170580, 973953, 4864795, 17994264, 0
Offset: 0
Examples
Show: T(n,k) = T(n-1,k) - 3*T(n-1,k-1) + 3*T(n,k-1) + T(n+1,k-1) at n=8,k=4: T(8,4) = T(7,4) - 3*T(7,3) + 3*T(8,3) + T(9,3) or: 2093 = 1353 - 3*244 + 3*340 + 452. Triangle begins: 1; 1, 0; 1, 1, 0; 1, 2, 6, 0; 1, 3, 13, 42, 0; 1, 4, 21, 96, 325, 0; 1, 5, 30, 163, 770, 2688, 0; 1, 6, 40, 244, 1353, 6530, 23286, 0; 1, 7, 51, 340, 2093, 11760, 57612, 208659, 0; 1, 8, 63, 452, 3010, 18636, 105681, 523446, 1918314, 0; 1, 9, 76, 581, 4125, 27441, 170580, 973953, 4864795, 17994264, 0; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n, 0, T[n-1, k] -3*T[n-1, k-1] +3*T[n, k-1] +T[n+1, k-1]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2021 *)
-
PARI
{T(n,k)=polcoeff((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)+x*O(x^k)))/2/(1-3*x))/x)^(n-k),k)} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
Sage
@CachedFunction def T(n, k): if (k==0): return 1 elif (k==n): return 0 else: return T(n-1, k) - 3*T(n-1, k-1) + 3*T(n, k-1) + T(n+1, k-1) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 18 2021
Formula
Since g.f. G=G(x) of A118351 satisfies: G = 1 - 3*x*G + 3*x*G^2 + x*G^3 then
T(n,k) = T(n-1,k) - 3*T(n-1,k-1) + 3*T(n,k-1) + T(n+1,k-1).
Recurrence involving antidiagonals:
T(n,k) = T(n-1,k) + Sum_{j=1..k} [4*T(n-1+j,k-j) - 3*T(n-2+j,k-j)] for n>k>=0.
Comments