A118350 Pendular triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + 3*T(n-1,k), for n>=k>=0, with T(n,0)=1 and T(n,n)=0^n.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 13, 7, 1, 0, 1, 5, 21, 42, 8, 1, 0, 1, 6, 30, 96, 54, 9, 1, 0, 1, 7, 40, 163, 325, 67, 10, 1, 0, 1, 8, 51, 244, 770, 445, 81, 11, 1, 0, 1, 9, 63, 340, 1353, 2688, 583, 96, 12, 1, 0, 1, 10, 76, 452, 2093, 6530, 3842, 740, 112, 13, 1, 0
Offset: 0
Examples
Row 6 equals the pendular sums of row 5, [1, 4, 13, 7, 1, 0], where the sums proceed as follows: [1, __, __, __, __, __]: T(6,0) = T(5,0) = 1; [1, __, __, __, __, 1]: T(6,5) = T(6,0) + 3*T(5,5) = 1 + 3*0 = 1; [1, 5, __, __, __, 1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5; [1, 5, __, __, 8, 1]: T(6,4) = T(6,1) + 3*T(5,4) = 5 + 3*1 = 8; [1, 5, 21, __, 8, 1]: T(6,2) = T(6,4) + T(5,2) = 8 + 13 = 21; [1, 5, 21, 42, 8, 1]: T(6,3) = T(6,2) + 3*T(5,3) = 21 + 3*7 = 42; [1, 5, 21, 42, 8, 1, 0] finally, append a zero to obtain row 6. Triangle begins: 1; 1, 0; 1, 1, 0; 1, 2, 1, 0; 1, 3, 6, 1, 0; 1, 4, 13, 7, 1, 0; 1, 5, 21, 42, 8, 1, 0; 1, 6, 30, 96, 54, 9, 1, 0; 1, 7, 40, 163, 325, 67, 10, 1, 0; 1, 8, 51, 244, 770, 445, 81, 11, 1, 0; 1, 9, 63, 340, 1353, 2688, 583, 96, 12, 1, 0; 1, 10, 76, 452, 2093, 6530, 3842, 740, 112, 13, 1, 0; 1, 11, 90, 581, 3010, 11760, 23286, 5230, 917, 129, 14, 1, 0; ... Central terms are T(2*n,n) = A118351(n); semi-diagonals form successive self-convolutions of the central terms: T(2*n+1,n) = A118352(n) = [A118351^2](n), T(2*n+2,n) = A118353(n) = [A118351^3](n).
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n,k,p) if k lt 0 or n lt k then return 0; elif k eq 0 then return 1; elif k eq n then return 0; elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p); else return T(n,n-k-1,p) + p*T(n-1,k,p); end if; return T; end function; [T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
-
Mathematica
T[n_, k_, p_]:= T[n,k,p] = If[n
G. C. Greubel, Feb 17 2021 *) -
PARI
T(n,k)=if(n
2*k,T(n,n-k)+T(n-1,k),T(n,n-1-k)+3*T(n-1,k))))) -
Sage
@CachedFunction def T(n, k, p): if (k<0 or n
2*k): return T(n,n-k,p) + T(n-1,k,p) else: return T(n, n-k-1, p) + p*T(n-1, k, p) flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
Comments