A151616 Row sums of A118354.
1, 1, 2, 9, 59, 447, 3647, 31460, 280523
Offset: 0
Keywords
Crossrefs
Cf. A118354.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Row 6 equals the pendular sums of row 5, [1, 4, 13, 7, 1, 0], where the sums proceed as follows: [1, __, __, __, __, __]: T(6,0) = T(5,0) = 1; [1, __, __, __, __, 1]: T(6,5) = T(6,0) + 3*T(5,5) = 1 + 3*0 = 1; [1, 5, __, __, __, 1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5; [1, 5, __, __, 8, 1]: T(6,4) = T(6,1) + 3*T(5,4) = 5 + 3*1 = 8; [1, 5, 21, __, 8, 1]: T(6,2) = T(6,4) + T(5,2) = 8 + 13 = 21; [1, 5, 21, 42, 8, 1]: T(6,3) = T(6,2) + 3*T(5,3) = 21 + 3*7 = 42; [1, 5, 21, 42, 8, 1, 0] finally, append a zero to obtain row 6. Triangle begins: 1; 1, 0; 1, 1, 0; 1, 2, 1, 0; 1, 3, 6, 1, 0; 1, 4, 13, 7, 1, 0; 1, 5, 21, 42, 8, 1, 0; 1, 6, 30, 96, 54, 9, 1, 0; 1, 7, 40, 163, 325, 67, 10, 1, 0; 1, 8, 51, 244, 770, 445, 81, 11, 1, 0; 1, 9, 63, 340, 1353, 2688, 583, 96, 12, 1, 0; 1, 10, 76, 452, 2093, 6530, 3842, 740, 112, 13, 1, 0; 1, 11, 90, 581, 3010, 11760, 23286, 5230, 917, 129, 14, 1, 0; ... Central terms are T(2*n,n) = A118351(n); semi-diagonals form successive self-convolutions of the central terms: T(2*n+1,n) = A118352(n) = [A118351^2](n), T(2*n+2,n) = A118353(n) = [A118351^3](n).
function T(n,k,p) if k lt 0 or n lt k then return 0; elif k eq 0 then return 1; elif k eq n then return 0; elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p); else return T(n,n-k-1,p) + p*T(n-1,k,p); end if; return T; end function; [T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 17 2021 *)
T(n,k)=if(n2*k,T(n,n-k)+T(n-1,k),T(n,n-1-k)+3*T(n-1,k)))))
@CachedFunction def T(n, k, p): if (k<0 or n2*k): return T(n,n-k,p) + T(n-1,k,p) else: return T(n, n-k-1, p) + p*T(n-1, k, p) flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
R:=PowerSeriesRing(Rationals(), 30); [1] cat Coefficients(R!( Reversion( x/((1+x)*(1+5*x+x^2)) ) )); // G. C. Greubel, Feb 18 2021
T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 18 2021 *) Join[{1}, Rest@CoefficientList[InverseSeries[Series[ x/((1+x)*(1+5*x+x^2)), {x,0,30}]], x]] (* G. C. Greubel, Feb 18 2021 *)
{a(n)=polcoeff((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)+x*O(x^n)))/2/(1-3*x))/x),n)} for(n=0,30,print1(a(n),", "))
{a(n)=polcoeff(1 + serreverse( x/((1+x)*(1+5*x+x^2 +x*O(x^n)))),n)} for(n=0,30,print1(a(n),", "))
def S_list(prec): P.= PowerSeriesRing(ZZ, prec) return P( (x/((1+x)*(1+5*x+x^2))).reverse() ).list() a=S_list(31); [1]+a[1:] # G. C. Greubel, Feb 18 2021
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n, 0, T[n-1, k] -3*T[n-1, k-1] +3*T[n, k-1] +T[n+1, k-1] ]]; Table[T[n, n-2], {n,2,30}] (* G. C. Greubel, Feb 18 2021 *)
{a(n)=polcoeff((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)+x*O(x^n)))/2/(1-3*x))/x)^2,n)}
@CachedFunction def T(n, k): if (k<0 or nG. C. Greubel, Feb 18 2021
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n, 0, T[n-1, k] - 3*T[n-1, k-1] + 3*T[n, k-1] + T[n+1, k-1] ]]; Table[T[n, n-3], {n, 3, 30}] (* G. C. Greubel, Feb 18 2021 *)
my(x='x+O('x^33)); Vec((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)))/2/(1-3*x))/x)^3)
@CachedFunction def T(n, k): if (k<0 or nG. C. Greubel, Feb 18 2021
Comments