cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A151616 Row sums of A118354.

Original entry on oeis.org

1, 1, 2, 9, 59, 447, 3647, 31460, 280523
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2009

Keywords

Crossrefs

Cf. A118354.

A118350 Pendular triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) + 3*T(n-1,k), for n>=k>=0, with T(n,0)=1 and T(n,n)=0^n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 13, 7, 1, 0, 1, 5, 21, 42, 8, 1, 0, 1, 6, 30, 96, 54, 9, 1, 0, 1, 7, 40, 163, 325, 67, 10, 1, 0, 1, 8, 51, 244, 770, 445, 81, 11, 1, 0, 1, 9, 63, 340, 1353, 2688, 583, 96, 12, 1, 0, 1, 10, 76, 452, 2093, 6530, 3842, 740, 112, 13, 1, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

See definition of pendular triangle and pendular sums at A118340.

Examples

			Row 6 equals the pendular sums of row 5,
  [1,  4, 13,  7,  1,  0], where the sums proceed as follows:
  [1, __, __, __, __, __]: T(6,0) = T(5,0) = 1;
  [1, __, __, __, __,  1]: T(6,5) = T(6,0) + 3*T(5,5) = 1 + 3*0 = 1;
  [1,  5, __, __, __,  1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5;
  [1,  5, __, __,  8,  1]: T(6,4) = T(6,1) + 3*T(5,4) = 5 + 3*1 = 8;
  [1,  5, 21, __,  8,  1]: T(6,2) = T(6,4) + T(5,2) = 8 + 13 = 21;
  [1,  5, 21, 42,  8,  1]: T(6,3) = T(6,2) + 3*T(5,3) = 21 + 3*7 = 42;
  [1,  5, 21, 42,  8,  1, 0] finally, append a zero to obtain row 6.
Triangle begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  1,   0;
  1,  3,  6,   1,    0;
  1,  4, 13,   7,    1,     0;
  1,  5, 21,  42,    8,     1,     0;
  1,  6, 30,  96,   54,     9,     1,    0;
  1,  7, 40, 163,  325,    67,    10,    1,   0;
  1,  8, 51, 244,  770,   445,    81,   11,   1,   0;
  1,  9, 63, 340, 1353,  2688,   583,   96,  12,   1,  0;
  1, 10, 76, 452, 2093,  6530,  3842,  740, 112,  13,  1, 0;
  1, 11, 90, 581, 3010, 11760, 23286, 5230, 917, 129, 14, 1, 0; ...
Central terms are T(2*n,n) = A118351(n);
semi-diagonals form successive self-convolutions of the central terms:
T(2*n+1,n) = A118352(n) = [A118351^2](n),
T(2*n+2,n) = A118353(n) = [A118351^3](n).
		

Crossrefs

Cf. A167763 (p=0), A118340 (p=1), A118345 (p=2), this sequence (p=3).

Programs

  • Magma
    function T(n,k,p)
      if k lt 0 or n lt k then return 0;
      elif k eq 0 then return 1;
      elif k eq n then return 0;
      elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p);
      else return T(n,n-k-1,p) + p*T(n-1,k,p);
      end if;
      return T;
    end function;
    [T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 17 2021 *)
  • PARI
    T(n,k)=if(n2*k,T(n,n-k)+T(n-1,k),T(n,n-1-k)+3*T(n-1,k)))))
    
  • Sage
    @CachedFunction
    def T(n, k, p):
        if (k<0 or n2*k): return T(n,n-k,p) + T(n-1,k,p)
        else: return T(n, n-k-1, p) + p*T(n-1, k, p)
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
    

Formula

T(2*n+m,n) = [A118351^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of the central terms A118351.

A118351 Central terms of pendular triangle A118350.

Original entry on oeis.org

1, 1, 6, 42, 325, 2688, 23286, 208659, 1918314, 17994264, 171542460, 1657212768, 16188521454, 159634359415, 1586932321578, 15886925400954, 160026976985205, 1620715748715648, 16493797802077032, 168583560794745684
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    [1] cat Coefficients(R!( Reversion( x/((1+x)*(1+5*x+x^2)) ) )); // G. C. Greubel, Feb 18 2021
  • Mathematica
    T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 18 2021 *)
    Join[{1}, Rest@CoefficientList[InverseSeries[Series[ x/((1+x)*(1+5*x+x^2)), {x,0,30}]], x]] (* G. C. Greubel, Feb 18 2021 *)
  • PARI
    {a(n)=polcoeff((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)+x*O(x^n)))/2/(1-3*x))/x),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(1 + serreverse( x/((1+x)*(1+5*x+x^2 +x*O(x^n)))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • Sage
    def S_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (x/((1+x)*(1+5*x+x^2))).reverse() ).list()
    a=S_list(31); [1]+a[1:] # G. C. Greubel, Feb 18 2021
    

Formula

G.f. A=A(x) satisfies: A = 1 - 3*x*A + 3*x*A^2 + x*A^3.
G.f.: 1 + Series_Reversion( x/((1+x)*(1+5*x+x^2)) ).
G.f.: (1/x)*Series_Reversion( x*(1-3*x+sqrt((1-3*x)*(1-7*x)))/2/(1-3*x) ).
For n>0: a(n) = 1/n*sum(j=0..n, C(n,j) *sum(i=0..(n-1), C(j,i)*C(n-j,2*j-n-i-1) *6^(2*n-3*j+2*i+1))). - Vladimir Kruchinin, Dec 26 2010
a(n) ~ s^(3/2) / (3*sqrt(2*Pi*(1 + 3*s + 3*s^2)) * n^(3/2) * r^(n+1)), where s = 2*sin(Pi/6 + arctan(sqrt(7)/3)/3) - 1, r = 2*s/(9 - 12*sin(Pi/6 - 2*arctan(sqrt(7)/3)/3)). - Vaclav Kotesovec, Feb 18 2021

A118352 Semi-diagonal (one row below central terms) of pendular triangle A118350 and equal to the self-convolution of the central terms (A118351).

Original entry on oeis.org

1, 2, 13, 96, 770, 6530, 57612, 523446, 4864795, 46032288, 441981816, 4295393886, 42172388820, 417668676206, 4167719552099, 41861139949200, 422890327921650, 4294027462637528, 43801007565527184, 448625344231794792
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n, 0, T[n-1, k] -3*T[n-1, k-1] +3*T[n, k-1] +T[n+1, k-1] ]];
    Table[T[n, n-2], {n,2,30}] (* G. C. Greubel, Feb 18 2021 *)
  • PARI
    {a(n)=polcoeff((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)+x*O(x^n)))/2/(1-3*x))/x)^2,n)}
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or nG. C. Greubel, Feb 18 2021

A118353 Semi-diagonal (two rows below central terms) of pendular triangle A118350 and equal to the self-convolution cube of the central terms (A118351).

Original entry on oeis.org

1, 3, 21, 163, 1353, 11760, 105681, 973953, 9154821, 87428388, 845894700, 8273978100, 81682757317, 812829371205, 8144563709391, 82104333340467, 832125695906313, 8473862660311392, 86661931504395228, 889705959333345756
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n, 0, T[n-1, k] - 3*T[n-1, k-1] + 3*T[n, k-1] + T[n+1, k-1] ]];
    Table[T[n, n-3], {n, 3, 30}] (* G. C. Greubel, Feb 18 2021 *)
  • PARI
    my(x='x+O('x^33)); Vec((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)))/2/(1-3*x))/x)^3)
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or nG. C. Greubel, Feb 18 2021
Showing 1-5 of 5 results.