cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118354 Convolution triangle, read by rows, where diagonals are successive self-convolutions of A118351.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 6, 0, 1, 3, 13, 42, 0, 1, 4, 21, 96, 325, 0, 1, 5, 30, 163, 770, 2688, 0, 1, 6, 40, 244, 1353, 6530, 23286, 0, 1, 7, 51, 340, 2093, 11760, 57612, 208659, 0, 1, 8, 63, 452, 3010, 18636, 105681, 523446, 1918314, 0, 1, 9, 76, 581, 4125, 27441, 170580, 973953, 4864795, 17994264, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

A118351 equals the central terms of pendular triangle A118350 and the lower diagonals of this triangle form the semi-diagonals of the triangle A118350.

Examples

			Show: T(n,k) = T(n-1,k) - 3*T(n-1,k-1) + 3*T(n,k-1) + T(n+1,k-1)
at n=8,k=4: T(8,4) = T(7,4) - 3*T(7,3) + 3*T(8,3) + T(9,3)
or: 2093 = 1353 - 3*244 + 3*340 + 452.
Triangle begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  6,   0;
  1, 3, 13,  42,    0;
  1, 4, 21,  96,  325,     0;
  1, 5, 30, 163,  770,  2688,      0;
  1, 6, 40, 244, 1353,  6530,  23286,      0;
  1, 7, 51, 340, 2093, 11760,  57612, 208659,       0;
  1, 8, 63, 452, 3010, 18636, 105681, 523446, 1918314,        0;
  1, 9, 76, 581, 4125, 27441, 170580, 973953, 4864795, 17994264, 0; ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n, 0, T[n-1, k] -3*T[n-1, k-1] +3*T[n, k-1] +T[n+1, k-1]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2021 *)
  • PARI
    {T(n,k)=polcoeff((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)+x*O(x^k)))/2/(1-3*x))/x)^(n-k),k)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return 1
        elif (k==n): return 0
        else: return T(n-1, k) - 3*T(n-1, k-1) + 3*T(n, k-1) + T(n+1, k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 18 2021

Formula

Since g.f. G=G(x) of A118351 satisfies: G = 1 - 3*x*G + 3*x*G^2 + x*G^3 then
T(n,k) = T(n-1,k) - 3*T(n-1,k-1) + 3*T(n,k-1) + T(n+1,k-1).
Recurrence involving antidiagonals:
T(n,k) = T(n-1,k) + Sum_{j=1..k} [4*T(n-1+j,k-j) - 3*T(n-2+j,k-j)] for n>k>=0.