cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118372 S-perfect numbers.

Original entry on oeis.org

6, 24, 28, 96, 126, 224, 384, 496, 1536, 1792, 6144, 8128, 14336, 15872, 24576, 98304, 114688, 393216, 507904, 917504, 1040384, 1572864, 5540590, 6291456, 7340032, 9078520, 16252928, 22528935, 25165824, 33550336, 56918394, 58720256, 100663296, 133169152
Offset: 1

Views

Author

Vladeta Jovovic, May 15 2006

Keywords

Comments

In base 12 the sequence becomes 6, 20, 24, 80, X6, 168, 280, 354, X80, 1054, 3680, 4854, 8368, 9228, 12280, 48X80, 56454, where X is 10 and E is 11. The perfect numbers (A000396) in this sequence in base 12 are 6, 24, 354, 4854. - Walter Kehowski, May 20 2006
Subsequence of A083207. - Reinhard Zumkeller, Oct 28 2010
Conjecture: If k is an S-perfect number, then A000203(k)/2 is a Zumkeller number (A083207). - Ivan N. Ianakiev, Apr 23 2017
Called "Granville numbers" by De Koninck (2009), after Andrew Granville, who proposed the problem of calculating these numbers in December 1996. - Amiram Eldar, Aug 11 2023

Examples

			2 is in S since s = Sum_{d|2, d<2 and d in S} d = 1 and 1 <= 2. Similarly, 3, 4, 5, 6 are in S with 6 as the first element such that s = n, that is, 6 is the first S-perfect number. - _Walter Kehowski_, May 20 2006
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009.

Crossrefs

Subsequence of A023196 and A083207.
A000396 is a subsequence.

Programs

  • C
    #include  #include  #define MAX_SIZE_SSET 1000000 int main(int argc, char*argv[]) { int Sset[MAX_SIZE_SSET] ; int Ssetsize= 1; Sset[0]=1 ; for(int n=2; n < MAX_SIZE_SSET; n++) { int dsum=0 ; for(int i=0; i< Ssetsize; i++) { if( n % Sset[i] ==0 && Sset[i] < n) dsum += Sset[i] ; if (dsum > n || Sset[i] >=n) break ; } if( dsum <= n) { if(dsum==n) printf("%d\n",n) ; Sset[Ssetsize++ ]= n ; } } } /* R. J. Mathar, Oct 28 2010 */
    
  • Haskell
    a118372_list = sPerfect 1 [] where
       sPerfect x ss | v > x = sPerfect (x + 1) ss
                     | v < x = sPerfect (x + 1) (x : ss)
                     | otherwise = x : sPerfect (x + 1) (x : ss)
                     where v = sum (filter ((== 0) . mod x) ss)
    -- Reinhard Zumkeller, Oct 28 2010, Nov 02 2010, Feb 25 2012
    
  • Maple
    with(numtheory); S:={1}: SP:=[]: for w to 1 do for n from 1 to 2*10^5 do d:=select(proc(z) z in S and zWalter Kehowski, May 20 2006
  • Mathematica
    S = {1}; SP = {}; Do[ s = Total[ Intersection[S , Divisors[n]]]; If[s <= n, S = Union[S, {n}]]; If[s == n, Print[n]; AppendTo[SP, n]] , {n, 2, 2*10^5} ]; SP (* Jean-François Alcover, Dec 06 2011, after Walter Kehowski *)
  • Sage
    def S_perfect_list(search_limit):
        S = []; T = []
        for n in (1..search_limit):
            d = [t for t in divisors(n) if t in S and t < n]
            s = sum(d)
            if s <= n: S.append(n)
            if s == n: T.append(n)
        return T
    S_perfect_list(25555) # after Walter Kehowski, Peter Luschny, Sep 03 2018

Formula

S = {1}. Assume n>1 and that all numbers mWalter Kehowski, May 20 2006
I take the preceding comment to mean: S_0 = {1}. s_n = Sum_{d|n, d n, and S_{n-1} U {n} if s_n <= n. - Hugo van der Sanden, Oct 28 2010

Extensions

More terms from R. J. Mathar, May 17 2006, a(18) and a(19) Oct 28 2010
Two more terms added and C-program reduced by R. J. Mathar, Oct 28 2010
More terms from William Rex Marshall, Oct 28 2010