cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118376 Number of all trees of weight n, where nodes have positive integer weights and the sum of the weights of the children of a node is equal to the weight of the node.

Original entry on oeis.org

1, 2, 6, 24, 112, 568, 3032, 16768, 95200, 551616, 3248704, 19389824, 117021824, 712934784, 4378663296, 27081760768, 168530142720, 1054464293888, 6629484729344, 41860283723776, 265346078982144, 1687918305128448, 10771600724946944, 68941213290561536
Offset: 1

Views

Author

Jeremy Johnson (jjohnson(AT)cs.drexel.edu), May 15 2006

Keywords

Comments

The number of trees with leaf nodes equal to 1 is counted by the sequence A001003 of super-Catalan numbers. The number of binary trees is counted by the sequence A007317 and the number of binary trees with leaf nodes equal to 1 is counted by the sequence A000108 of Catalan numbers.
Also the number of series-reduced enriched plane trees of weight n. A series-reduced enriched plane tree of weight n is either the number n itself or a finite sequence of at least two series-reduced enriched plane trees, one of each part of an integer composition of n. For example, the a(3) = 6 trees are: 3, (21), (12), (111), ((11)1), (1(11)). - Gus Wiseman, Sep 11 2018
Conjectured to be the number of permutations of length n avoiding the partially ordered pattern (POP) {1>2, 1>3, 3>4, 3>5} of length 5. That is, conjectured to be the number of length n permutations having no subsequences of length 5 in which the first element is the largest, and the third element is larger than the fourth and fifth elements. - Sergey Kitaev, Dec 13 2020
This conjecture has been proven. It can be restated as the number of size n permutations avoiding 51423, 51432, 52413, 52431, 53412, 53421, 54312, 54321. There are twelve sets of permutations avoiding eight size five permutations that are known to match this sequence. A further four are conjectured to match this sequence. - Christian Bean, Jul 24 2024

Examples

			T(3) = 6 because there are six trees
  3    3      3     3     3       3
      2 1    2 1   1 2   1 2    1 1 1
            1 1           1 1
From _Gus Wiseman_, Sep 11 2018: (Start)
The a(4) = 24 series-reduced enriched plane trees:
  4,
  (31), (13), (22), (211), (121), (112), (1111),
  ((21)1), ((12)1), (1(21)), (1(12)), (2(11)), ((11)2),
  ((111)1), (1(111)), ((11)(11)), ((11)11), (1(11)1), (11(11)),
  (((11)1)1), ((1(11))1), (1((11)1)), (1(1(11))).
(End)
		

Crossrefs

Programs

  • Maple
    T := proc(n) option remember; local C, s, p, tp, k, i; if n = 1 then return 1; else s := 1; for k from 2 to n do C := combinat[composition](n,k); for p in C do tp := map(T,p); s := s + mul(tp[i],i=1..nops(tp)); end do; end do; end if; return s; end;
  • Mathematica
    Rest[CoefficientList[Series[(Sqrt[1-8*x+8*x^2]-1)/(4*x-4), {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 03 2014 *)
    a[n_] := 1+Sum[Binomial[n-1, k-1]*Hypergeometric2F1[2-k, k+1, 2, -1], {k, 2, n}]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
    urp[n_]:=Prepend[Join@@Table[Tuples[urp/@ptn],{ptn,Join@@Permutations/@Select[IntegerPartitions[n],Length[#]>1&]}],n];
    Table[Length[urp[n]],{n,7}] (* Gus Wiseman, Sep 11 2018 *)
  • Maxima
    a(n):=sum((-1)^j*2^(n-j-1)*binomial(n,j)*binomial(2*n-2*j-2,n-2*j-1),j,0,(n-1)/2)/n; /* Vladimir Kruchinin, Sep 29 2020 */
  • PARI
    x='x+O('x^25); Vec((sqrt(1-8*x+8*x^2) - 1)/(4*x-4)) \\ G. C. Greubel, Feb 08 2017
    

Formula

Recurrence: T(1) = 1; For n > 1, T(n) = 1 + Sum_{n=n1+...+nt} T(n1)*...*T(nt).
G.f.: (-1+(1-8*z+8*z^2)^(1/2))/(-4+4*z).
From Vladimir Kruchinin, Sep 03 2010: (Start)
O.g.f.: A(x) = A001003(x/(1-x)).
a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A001003(k), n>0. (End)
D-finite with recurrence: n*a(n) + 3*(-3*n+4)*a(n-1) + 4*(4*n-9)*a(n-2) + 8*(-n+3)*a(n-3) = 0. - R. J. Mathar, Sep 27 2013
a(n) ~ sqrt(sqrt(2)-1) * 2^(n-1/2) * (2+sqrt(2))^(n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 03 2014
From Peter Bala, Jun 17 2015: (Start)
With offset 0, binomial transform of A001003.
O.g.f. A(x) = series reversion of x*(2*x - 1)/(2*x^2 - 1); 2*(1 - x)*A^2(x) - A(x) + x = 0.
A(x) satisfies the differential equation (x - 9*x^2 + 16*x^3 - 8*x^4)*A'(x) + x*(3 - 4*x)*A(x) + x*(2*x - 1) = 0. Extracting coefficients gives Mathar's recurrence above. (End)
a(n) = Sum_{j=0..(n-1)/2} (-1)^j*2^(n-j-1)*C(n,j)*C(2*n-2*j-2,n-2*j-1)/n. - Vladimir Kruchinin, Sep 29 2020