A118393 Eigenvector of triangle A059344. E.g.f.: exp( Sum_{n>=0} x^(2^n) ).
1, 1, 3, 7, 49, 201, 1411, 7183, 108417, 816049, 9966691, 80843511, 1381416433, 14049020857, 216003063459, 2309595457471, 72927332784001, 1046829280528353, 23403341433961027, 329565129021010279, 9695176730057249841, 160632514329660035881
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Programs
-
Magma
function a(n) if n eq 0 then return 1; else return (&+[ (Factorial(n)/(Factorial(k)*Factorial(n-2*k)))*a(k): k in [0..Floor(n/2)]]); end if; return a; end function; [a(n): n in [0..25]]; // G. C. Greubel, Feb 18 2021
-
Maple
A118393 := proc(n) option remember; if n <=1 then 1; else n!*add(procname(k)/k!/(n-2*k)!,k=0..n/2) ; end if; end proc: seq(A118393(n),n=0..20) ; # R. J. Mathar, Aug 19 2014 # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!* a(n-j)*binomial(n-1, j-1))(2^i), i=0..ilog2(n))) end: seq(a(n), n=0..25); # Alois P. Heinz, Oct 01 2017
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[n!/k!/(n - 2*k)!*a[k], {k, 0, n/2}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2018 *)
-
PARI
a(n)=n!*polcoeff(exp(sum(k=0,#binary(n),x^(2^k))+x*O(x^n)),n)
-
Sage
f=factorial; def a(n): return 1 if n==0 else sum((f(n)/(f(k)*f(n-2*k)))*a(k) for k in (0..n//2)) [a(n) for n in (0..25)] # G. C. Greubel, Feb 18 2021
Formula
a(n) = Sum_{k=0..[n/2]} n!/k!/(n-2*k)! *a(k) for n>=0, with a(0)=1.
Comments