cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118393 Eigenvector of triangle A059344. E.g.f.: exp( Sum_{n>=0} x^(2^n) ).

Original entry on oeis.org

1, 1, 3, 7, 49, 201, 1411, 7183, 108417, 816049, 9966691, 80843511, 1381416433, 14049020857, 216003063459, 2309595457471, 72927332784001, 1046829280528353, 23403341433961027, 329565129021010279, 9695176730057249841, 160632514329660035881
Offset: 0

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Comments

E.g.f. of A059344 is: exp(x+y*x^2). More generally, given a triangle with e.g.f.: exp(x+y*x^b), the eigenvector will have e.g.f.: exp( Sum_{n>=0} x^(b^n) ).

Crossrefs

Cf. A059344, variants: A118395, A118930.

Programs

  • Magma
    function a(n)
      if n eq 0 then return 1;
      else return (&+[ (Factorial(n)/(Factorial(k)*Factorial(n-2*k)))*a(k): k in [0..Floor(n/2)]]);
      end if; return a; end function;
    [a(n): n in [0..25]]; // G. C. Greubel, Feb 18 2021
  • Maple
    A118393 := proc(n)
        option remember;
        if n <=1 then
            1;
        else
            n!*add(procname(k)/k!/(n-2*k)!,k=0..n/2) ;
        end if;
    end proc:
    seq(A118393(n),n=0..20) ; # R. J. Mathar, Aug 19 2014
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add((j-> j!*
          a(n-j)*binomial(n-1, j-1))(2^i), i=0..ilog2(n)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 01 2017
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[n!/k!/(n - 2*k)!*a[k], {k, 0, n/2}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2018 *)
  • PARI
    a(n)=n!*polcoeff(exp(sum(k=0,#binary(n),x^(2^k))+x*O(x^n)),n)
    
  • Sage
    f=factorial;
    def a(n): return 1 if n==0 else sum((f(n)/(f(k)*f(n-2*k)))*a(k) for k in (0..n//2))
    [a(n) for n in (0..25)] # G. C. Greubel, Feb 18 2021
    

Formula

a(n) = Sum_{k=0..[n/2]} n!/k!/(n-2*k)! *a(k) for n>=0, with a(0)=1.