A118394 Triangle T(n,k) = n!/(k!*(n-3*k)!), for n >= 3*k >= 0, read by rows.
1, 1, 1, 1, 6, 1, 24, 1, 60, 1, 120, 360, 1, 210, 2520, 1, 336, 10080, 1, 504, 30240, 60480, 1, 720, 75600, 604800, 1, 990, 166320, 3326400, 1, 1320, 332640, 13305600, 19958400, 1, 1716, 617760, 43243200, 259459200, 1, 2184, 1081080, 121080960, 1816214400
Offset: 0
Examples
Triangle begins: 1; 1; 1; 1, 6; 1, 24; 1, 60; 1, 120, 360; 1, 210, 2520; 1, 336, 10080; 1, 504, 30240, 60480; 1, 720, 75600, 604800; 1, 990, 166320, 3326400; 1, 1320, 332640, 13305600, 19958400; ...
Links
- G. C. Greubel, Rows n = 0..150 of the triangle, flattened
Programs
-
Magma
F:= Factorial; [F(n)/(F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
-
Mathematica
T[n_, k_] := n!/(k!(n-3k)!); Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/3]}] // Flatten (* Jean-François Alcover, Nov 04 2020 *)
-
PARI
T(n,k)=if(n<3*k || k<0,0,n!/k!/(n-3*k)!)
-
Sage
f=factorial; flatten([[f(n)/(f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
Formula
E.g.f.: A(x,y) = exp(x + y*x^3).
Comments