cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118394 Triangle T(n,k) = n!/(k!*(n-3*k)!), for n >= 3*k >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 24, 1, 60, 1, 120, 360, 1, 210, 2520, 1, 336, 10080, 1, 504, 30240, 60480, 1, 720, 75600, 604800, 1, 990, 166320, 3326400, 1, 1320, 332640, 13305600, 19958400, 1, 1716, 617760, 43243200, 259459200, 1, 2184, 1081080, 121080960, 1816214400
Offset: 0

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Comments

Row sums form A118395.
Eigenvector is A118396.

Examples

			Triangle begins:
  1;
  1;
  1;
  1,    6;
  1,   24;
  1,   60;
  1,  120,    360;
  1,  210,   2520;
  1,  336,  10080;
  1,  504,  30240,    60480;
  1,  720,  75600,   604800;
  1,  990, 166320,  3326400;
  1, 1320, 332640, 13305600, 19958400;
  ...
		

Crossrefs

Cf. A118395 (row sums), A118396 (eigenvector).
Variants: A059344, A118931.

Programs

  • Magma
    F:= Factorial;
    [F(n)/(F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    T[n_, k_] := n!/(k!(n-3k)!);
    Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/3]}] // Flatten (* Jean-François Alcover, Nov 04 2020 *)
  • PARI
    T(n,k)=if(n<3*k || k<0,0,n!/k!/(n-3*k)!)
    
  • Sage
    f=factorial;
    flatten([[f(n)/(f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

E.g.f.: A(x,y) = exp(x + y*x^3).