Original entry on oeis.org
1, 1, 3, 1, 5, -1, 7, -3, 9, -5, 11, -7, 13, -9, 15, -11, 17, -13, 19, -15, 21, -17, 23, -19, 25, -21, 27, -23, 29, -25, 31, -27, 33, -29, 35, -31, 37, -33, 39, -35, 41, -37, 43, -39, 45, -41, 47, -43, 49, -45, 51, -47, 53, -49, 55, -51, 57, -53, 59, -55, 61, -57, 63, -59, 65, -61, 67, -63, 69, -65, 71
Offset: 0
-
a := n -> `if`(n=1, 1, (5+(-1)^n*(2*n-3))/2);
seq(a(n), n=0..70); # Peter Luschny, Aug 04 2014
-
Join[{1, 1}, LinearRecurrence[{-1, 1, 1}, {3, 1, 5}, 70]] (* Jean-François Alcover, Jun 13 2019 *)
-
{a(n)=polcoeff((1+2*x+2*x^2)*(1+x^2)/(1+x+x*O(x^n))^2/(1-x),n,x)}
A118403
Unsigned row sums of triangle A118401; a(n) = A118402(n^2-n+2), where A118402 is the row sums of triangle A118400.
Original entry on oeis.org
1, 1, 3, 5, 9, 15, 23, 33, 45, 59, 75, 93, 113, 135, 159, 185, 213, 243, 275, 309, 345, 383, 423, 465, 509, 555, 603, 653, 705, 759, 815, 873, 933, 995, 1059, 1125, 1193, 1263, 1335, 1409, 1485, 1563, 1643, 1725, 1809, 1895, 1983, 2073, 2165, 2259, 2355
Offset: 0
-
seq(coeff(series((1-2*x+2*x^2)*(1+x^2)/(1-x)^3,x,n+1), x, n), n = 0 .. 55); # Muniru A Asiru, Jan 02 2019
-
Join[{1, 1}, Table[n^2 + n + 3, {n, 0, 47}]] (* Jon Maiga, Jan 02 2019 *)
-
{a(n)=polcoeff((1-2*x+2*x^2)*(1+x^2)/(1-x+x*O(x^n))^3,n,x)}
A118407
Triangle, read by rows, equal to the matrix square of triangle A118404; also equals the matrix inverse of triangle A118401.
Original entry on oeis.org
1, 0, 1, -2, 0, 1, 2, -2, 0, 1, 0, 2, -2, 0, 1, -2, 0, 2, -2, 0, 1, 4, -2, 0, 2, -2, 0, 1, -6, 4, -2, 0, 2, -2, 0, 1, 4, -6, 4, -2, 0, 2, -2, 0, 1, 6, 4, -6, 4, -2, 0, 2, -2, 0, 1, -20, 6, 4, -6, 4, -2, 0, 2, -2, 0, 1, 26, -20, 6, 4, -6, 4, -2, 0, 2, -2, 0, 1, -12, 26, -20, 6, 4, -6, 4, -2, 0, 2, -2, 0, 1
Offset: 0
Triangle begins:
1;
0, 1;
-2, 0, 1;
2,-2, 0, 1;
0, 2,-2, 0, 1;
-2, 0, 2,-2, 0, 1;
4,-2, 0, 2,-2, 0, 1;
-6, 4,-2, 0, 2,-2, 0, 1;
4,-6, 4,-2, 0, 2,-2, 0, 1;
6, 4,-6, 4,-2, 0, 2,-2, 0, 1;
-20, 6, 4,-6, 4,-2, 0, 2,-2, 0, 1;
26,-20, 6, 4,-6, 4,-2, 0, 2,-2, 0, 1; ...
-
{T(n,k)=polcoeff(polcoeff((1+x)^2/(1+x^2)/(1+2*x+2*x^2)/(1-x*y+x*O(x^n)),n,x)+y*O(y^k),k,y)}
A118400
Triangle T, read by rows, where all columns of T are different and yet all columns of the matrix square T^2 (A118401) are equal; a signed version of triangle A087698.
Original entry on oeis.org
1, 1, -1, 1, 0, 1, -1, -1, -1, -1, 1, 2, 2, 2, 1, -1, -3, -4, -4, -3, -1, 1, 4, 7, 8, 7, 4, 1, -1, -5, -11, -15, -15, -11, -5, -1, 1, 6, 16, 26, 30, 26, 16, 6, 1, -1, -7, -22, -42, -56, -56, -42, -22, -7, -1, 1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1, -1, -9, -37, -93, -162, -210, -210, -162, -93, -37, -9, -1
Offset: 0
Triangle T begins:
1;
1,-1;
1, 0, 1;
-1,-1,-1,-1;
1, 2, 2, 2, 1;
-1,-3,-4,-4,-3,-1;
1, 4, 7, 8, 7, 4, 1;
-1,-5,-11,-15,-15,-11,-5,-1;
1, 6, 16, 26, 30, 26, 16, 6, 1;
-1,-7,-22,-42,-56,-56,-42,-22,-7,-1;
1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1;
-1,-9,-37,-93,-162,-210,-210,-162,-93,-37,-9,-1; ...
The matrix square is A118401:
1;
0, 1;
2, 0, 1;
-2, 2, 0, 1;
4,-2, 2, 0, 1;
-6, 4,-2, 2, 0, 1;
8,-6, 4,-2, 2, 0, 1;
-10, 8,-6, 4,-2, 2, 0, 1;
12,-10, 8,-6, 4,-2, 2, 0, 1; ...
in which all columns are equal.
-
T(n,k)=polcoeff(polcoeff((1+2*x+2*x^2)/(1+x+x*y+x*O(x^n)),n,x)+y*O(y^k),k,y)
-
T(n,k)=if(n==1&k==0,1,(-1)^n*(binomial(n,k)-2*binomial(n-2,k-1)))
Showing 1-4 of 4 results.
Comments