A118401 Triangle, read by rows, equal to the matrix square of triangle A118400; also equals the matrix inverse of triangle A118407.
1, 0, 1, 2, 0, 1, -2, 2, 0, 1, 4, -2, 2, 0, 1, -6, 4, -2, 2, 0, 1, 8, -6, 4, -2, 2, 0, 1, -10, 8, -6, 4, -2, 2, 0, 1, 12, -10, 8, -6, 4, -2, 2, 0, 1, -14, 12, -10, 8, -6, 4, -2, 2, 0, 1, 16, -14, 12, -10, 8, -6, 4, -2, 2, 0, 1, -18, 16, -14, 12, -10, 8, -6, 4, -2, 2, 0, 1, 20, -18, 16, -14, 12, -10, 8, -6, 4, -2, 2, 0, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 2, 0, 1; -2, 2, 0, 1; 4,-2, 2, 0, 1; -6, 4,-2, 2, 0, 1; 8,-6, 4,-2, 2, 0, 1; -10, 8,-6, 4,-2, 2, 0, 1; 12,-10, 8,-6, 4,-2, 2, 0, 1; -14, 12,-10, 8,-6, 4,-2, 2, 0, 1; 16,-14, 12,-10, 8,-6, 4,-2, 2, 0, 1; ...
Crossrefs
Programs
-
PARI
{T(n,k)=polcoeff(polcoeff((1+2*x+2*x^2)*(1+x^2)/(1+x)^2/(1-x*y+x*O(x^n)),n,x)+y*O(y^k),k,y)}
Formula
G.f.: A(x,y) = (1 + 2*x + 2*x^2)*(1+x^2)/(1+x)^2/(1-x*y). Column g.f.: (1 + 2*x + 2*x^2)*(1+x^2)/(1+x)^2.
Comments