A118407
Triangle, read by rows, equal to the matrix square of triangle A118404; also equals the matrix inverse of triangle A118401.
Original entry on oeis.org
1, 0, 1, -2, 0, 1, 2, -2, 0, 1, 0, 2, -2, 0, 1, -2, 0, 2, -2, 0, 1, 4, -2, 0, 2, -2, 0, 1, -6, 4, -2, 0, 2, -2, 0, 1, 4, -6, 4, -2, 0, 2, -2, 0, 1, 6, 4, -6, 4, -2, 0, 2, -2, 0, 1, -20, 6, 4, -6, 4, -2, 0, 2, -2, 0, 1, 26, -20, 6, 4, -6, 4, -2, 0, 2, -2, 0, 1, -12, 26, -20, 6, 4, -6, 4, -2, 0, 2, -2, 0, 1
Offset: 0
Triangle begins:
1;
0, 1;
-2, 0, 1;
2,-2, 0, 1;
0, 2,-2, 0, 1;
-2, 0, 2,-2, 0, 1;
4,-2, 0, 2,-2, 0, 1;
-6, 4,-2, 0, 2,-2, 0, 1;
4,-6, 4,-2, 0, 2,-2, 0, 1;
6, 4,-6, 4,-2, 0, 2,-2, 0, 1;
-20, 6, 4,-6, 4,-2, 0, 2,-2, 0, 1;
26,-20, 6, 4,-6, 4,-2, 0, 2,-2, 0, 1; ...
-
{T(n,k)=polcoeff(polcoeff((1+x)^2/(1+x^2)/(1+2*x+2*x^2)/(1-x*y+x*O(x^n)),n,x)+y*O(y^k),k,y)}
Original entry on oeis.org
1, 0, 0, -2, 4, -6, 12, -26, 52, -102, 204, -410, 820, -1638, 3276, -6554, 13108, -26214, 52428, -104858, 209716, -419430, 838860, -1677722, 3355444, -6710886, 13421772, -26843546, 53687092, -107374182, 214748364, -429496730, 858993460, -1717986918, 3435973836, -6871947674
Offset: 0
-
seq(coeff(series((1+x)^2/(1+x^2)/(1+2*x),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 31 2018
-
Total /@ Table[SeriesCoefficient[(-1)^k/((1 + x^2) (1 + x)^(k - 1)), {x, 0, n - k}], {n, 0, 35}, {k, 0, n}] (* Michael De Vlieger, Oct 31 2018 *)
LinearRecurrence[{-2,-1,-2},{1,0,0},40] (* Harvey P. Dale, Aug 31 2020 *)
-
a(n)=polcoeff((1+x)^2/(1+x^2)/(1+2*x+x*O(x^n)),n,x)
-
a(n)=([0,1,0; 0,0,1; -2,-1,-2]^n*[1;0;0])[1,1] \\ Charles R Greathouse IV, Nov 06 2018
A118406
Unsigned row sums of triangle A118404.
Original entry on oeis.org
1, 2, 2, 4, 4, 8, 14, 28, 52, 104, 206, 412, 820, 1640, 3278, 6556, 13108, 26216, 52430, 104860, 209716, 419432, 838862, 1677724, 3355444, 6710888, 13421774, 26843548, 53687092, 107374184, 214748366, 429496732, 858993460, 1717986920, 3435973838
Offset: 0
-
CoefficientList[Series[(1-2x^2-5x^4)/(1-x^4)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,0,1,-2},{1,2,2,4,4},40] (* Harvey P. Dale, Jul 29 2021 *)
-
{a(n)=polcoeff((1 - 2*x^2 - 5*x^4)/(1-x^4)/(1-2*x+x*O(x^n)),n,x)}
A118400
Triangle T, read by rows, where all columns of T are different and yet all columns of the matrix square T^2 (A118401) are equal; a signed version of triangle A087698.
Original entry on oeis.org
1, 1, -1, 1, 0, 1, -1, -1, -1, -1, 1, 2, 2, 2, 1, -1, -3, -4, -4, -3, -1, 1, 4, 7, 8, 7, 4, 1, -1, -5, -11, -15, -15, -11, -5, -1, 1, 6, 16, 26, 30, 26, 16, 6, 1, -1, -7, -22, -42, -56, -56, -42, -22, -7, -1, 1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1, -1, -9, -37, -93, -162, -210, -210, -162, -93, -37, -9, -1
Offset: 0
Triangle T begins:
1;
1,-1;
1, 0, 1;
-1,-1,-1,-1;
1, 2, 2, 2, 1;
-1,-3,-4,-4,-3,-1;
1, 4, 7, 8, 7, 4, 1;
-1,-5,-11,-15,-15,-11,-5,-1;
1, 6, 16, 26, 30, 26, 16, 6, 1;
-1,-7,-22,-42,-56,-56,-42,-22,-7,-1;
1, 8, 29, 64, 98, 112, 98, 64, 29, 8, 1;
-1,-9,-37,-93,-162,-210,-210,-162,-93,-37,-9,-1; ...
The matrix square is A118401:
1;
0, 1;
2, 0, 1;
-2, 2, 0, 1;
4,-2, 2, 0, 1;
-6, 4,-2, 2, 0, 1;
8,-6, 4,-2, 2, 0, 1;
-10, 8,-6, 4,-2, 2, 0, 1;
12,-10, 8,-6, 4,-2, 2, 0, 1; ...
in which all columns are equal.
-
T(n,k)=polcoeff(polcoeff((1+2*x+2*x^2)/(1+x+x*y+x*O(x^n)),n,x)+y*O(y^k),k,y)
-
T(n,k)=if(n==1&k==0,1,(-1)^n*(binomial(n,k)-2*binomial(n-2,k-1)))
Showing 1-4 of 4 results.
Comments