cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118414 a(n) = (2*n - 1) * (2^n - 1).

Original entry on oeis.org

1, 9, 35, 105, 279, 693, 1651, 3825, 8687, 19437, 42987, 94185, 204775, 442341, 950243, 2031585, 4325343, 9175005, 19398619, 40894425, 85983191, 180355029, 377487315, 788529105, 1644167119, 3422552013, 7113539531, 14763950025, 30601641927, 63350767557, 130996502467, 270582939585
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 27 2006

Keywords

Comments

Row sums of triangle A118413.
For fixed n, define a triangle T(r,c) counting down the first n odd numbers on the left side, T(r,1) = 2*(n-r)+1, and counting up odd numbers on the right side, T(r,r) = 2*(n+r)-3, r>1. The interior elements are set by T(r,c)=T(r-1,c-1) + T(r-1,c). The sum of all members in this triangle is a(n). - J. M. Bergot, Oct 12 2012
Row sums of triangle A277046. - Miquel Cerda, Sep 28 2016

Examples

			The triangle T(r,c) for n=4 has row(1)=7; row(2) = 5, 9; row(3) = 3, 14, 11; row(4) = 1, 17, 25, 13, and a sum of 7+5+9+...+13 = 105 = a(4). - _J. M. Bergot_, Oct 12 2012
		

Crossrefs

Programs

  • Magma
    [(2*n-1)*(2^n-1): n in [1..40]]; // Vincenzo Librandi, Dec 26 2010
    
  • Mathematica
    Table[(2 n - 1) (2^n - 1), {n, 32}] (* or *)
    Rest@ CoefficientList[Series[-x (-1 - 3 x + 6 x^2)/((2 x - 1)^2*(x - 1)^2), {x, 0, 32}], x] (* Michael De Vlieger, Sep 26 2016 *)
    LinearRecurrence[{6,-13,12,-4},{1,9,35,105},40] (* Harvey P. Dale, Sep 12 2023 *)
  • PARI
    a(n)=(2*n-1)*(2^n-1) \\ Charles R Greathouse IV, Oct 12 2012

Formula

a(n) = A005408(n-1)*(A000079(n) - 1). Corrected by Omar E. Pol, Sep 26 2016
G.f. -x*(-1-3*x+6*x^2) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, Oct 15 2012
a(n) = A005408(n-1)*A000225(n). - Miquel Cerda, Sep 26 2016