A118414 a(n) = (2*n - 1) * (2^n - 1).
1, 9, 35, 105, 279, 693, 1651, 3825, 8687, 19437, 42987, 94185, 204775, 442341, 950243, 2031585, 4325343, 9175005, 19398619, 40894425, 85983191, 180355029, 377487315, 788529105, 1644167119, 3422552013, 7113539531, 14763950025, 30601641927, 63350767557, 130996502467, 270582939585
Offset: 1
Examples
The triangle T(r,c) for n=4 has row(1)=7; row(2) = 5, 9; row(3) = 3, 14, 11; row(4) = 1, 17, 25, 13, and a sum of 7+5+9+...+13 = 105 = a(4). - _J. M. Bergot_, Oct 12 2012
Links
- Altug Alkan, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4)
Programs
-
Magma
[(2*n-1)*(2^n-1): n in [1..40]]; // Vincenzo Librandi, Dec 26 2010
-
Mathematica
Table[(2 n - 1) (2^n - 1), {n, 32}] (* or *) Rest@ CoefficientList[Series[-x (-1 - 3 x + 6 x^2)/((2 x - 1)^2*(x - 1)^2), {x, 0, 32}], x] (* Michael De Vlieger, Sep 26 2016 *) LinearRecurrence[{6,-13,12,-4},{1,9,35,105},40] (* Harvey P. Dale, Sep 12 2023 *)
-
PARI
a(n)=(2*n-1)*(2^n-1) \\ Charles R Greathouse IV, Oct 12 2012
Formula
G.f. -x*(-1-3*x+6*x^2) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, Oct 15 2012
Comments